Implement map intersection
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
7e1f70210b
commit
56147cfc82
|
@ -74,7 +74,7 @@ module IsEquivalenceInstances where
|
||||||
(_≈₂_ : B → B → Set b)
|
(_≈₂_ : B → B → Set b)
|
||||||
(eB : IsEquivalence B _≈₂_) where
|
(eB : IsEquivalence B _≈₂_) where
|
||||||
|
|
||||||
open import Map A B ≡-dec-A using (Map; lift; subset; insert)
|
open import Map A B ≡-dec-A using (Map; lift; subset)
|
||||||
open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map
|
open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map
|
||||||
|
|
||||||
open IsEquivalence eB renaming
|
open IsEquivalence eB renaming
|
||||||
|
|
59
Map.agda
59
Map.agda
|
@ -277,6 +277,58 @@ private module ImplInsert (f : B → B → B) where
|
||||||
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁))
|
... | yes k≡k' rewrite k≡k' = absurd (All¬-¬Any k'≢xs₁ (∈-cong proj₁ k,v₁∈xs₁))
|
||||||
... | no k≢k' = k≢k'
|
... | no k≢k' = k≢k'
|
||||||
|
|
||||||
|
update : A → B → List (A × B) → List (A × B)
|
||||||
|
update k v [] = []
|
||||||
|
update k v ((k' , v') ∷ xs) with ≡-dec-A k k'
|
||||||
|
... | yes _ = (k' , f v v') ∷ xs
|
||||||
|
... | no _ = (k' , v') ∷ update k v xs
|
||||||
|
|
||||||
|
restrict : List (A × B) → List (A × B) → List (A × B)
|
||||||
|
restrict l [] = []
|
||||||
|
restrict l ((k' , v') ∷ xs) with ∈k-dec k' l
|
||||||
|
... | yes _ = (k' , v') ∷ restrict l xs
|
||||||
|
... | no _ = restrict l xs
|
||||||
|
|
||||||
|
intersect : List (A × B) → List (A × B) → List (A × B)
|
||||||
|
intersect l₁ l₂ = restrict l₁ (foldr update l₂ l₁)
|
||||||
|
|
||||||
|
update-keys : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||||||
|
keys l ≡ keys (update k v l)
|
||||||
|
update-keys {l = []} = refl
|
||||||
|
update-keys {k} {v} {l = (k' , v') ∷ xs}
|
||||||
|
with ≡-dec-A k k'
|
||||||
|
... | yes _ = refl
|
||||||
|
... | no _ rewrite update-keys {k} {v} {xs} = refl
|
||||||
|
|
||||||
|
update-preserves-Unique : ∀ {k : A} {v : B} {l : List (A × B)} →
|
||||||
|
Unique (keys l) → Unique (keys (update k v l ))
|
||||||
|
update-preserves-Unique {k} {v} {l} u rewrite update-keys {k} {v} {l} = u
|
||||||
|
|
||||||
|
updates-preserve-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||||||
|
Unique (keys l₂) → Unique (keys (foldr update l₂ l₁))
|
||||||
|
updates-preserve-Unique {[]} u = u
|
||||||
|
updates-preserve-Unique {(k , v) ∷ xs} u = update-preserves-Unique (updates-preserve-Unique {xs} u)
|
||||||
|
|
||||||
|
restrict-preserves-k≢ : ∀ {k : A} {l₁ l₂ : List (A × B)} →
|
||||||
|
All (λ k' → ¬ k ≡ k') (keys l₂) → All (λ k' → ¬ k ≡ k') (keys (restrict l₁ l₂))
|
||||||
|
restrict-preserves-k≢ {k} {l₁} {[]} k≢l₂ = k≢l₂
|
||||||
|
restrict-preserves-k≢ {k} {l₁} {(k' , v') ∷ xs} (k≢k' ∷ k≢xs)
|
||||||
|
with ∈k-dec k' l₁
|
||||||
|
... | yes _ = k≢k' ∷ restrict-preserves-k≢ k≢xs
|
||||||
|
... | no _ = restrict-preserves-k≢ k≢xs
|
||||||
|
|
||||||
|
restrict-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||||||
|
Unique (keys l₂) → Unique (keys (restrict l₁ l₂))
|
||||||
|
restrict-preserves-Unique {l₁} {[]} _ = empty
|
||||||
|
restrict-preserves-Unique {l₁} {(k , v) ∷ xs} (push k≢xs uxs)
|
||||||
|
with ∈k-dec k l₁
|
||||||
|
... | yes _ = push (restrict-preserves-k≢ k≢xs) (restrict-preserves-Unique uxs)
|
||||||
|
... | no _ = restrict-preserves-Unique uxs
|
||||||
|
|
||||||
|
intersect-preserves-Unique : ∀ {l₁ l₂ : List (A × B)} →
|
||||||
|
Unique (keys l₂) → Unique (keys (intersect l₁ l₂))
|
||||||
|
intersect-preserves-Unique {l₁} u = restrict-preserves-Unique (updates-preserve-Unique {l₁} u)
|
||||||
|
|
||||||
|
|
||||||
Map : Set (a ⊔ b)
|
Map : Set (a ⊔ b)
|
||||||
Map = Σ (List (A × B)) (λ l → Unique (keys l))
|
Map = Σ (List (A × B)) (λ l → Unique (keys l))
|
||||||
|
@ -298,14 +350,15 @@ module _ (f : B → B → B) where
|
||||||
open ImplInsert f renaming
|
open ImplInsert f renaming
|
||||||
( insert to insert-impl
|
( insert to insert-impl
|
||||||
; union to union-impl
|
; union to union-impl
|
||||||
|
; intersect to intersect-impl
|
||||||
)
|
)
|
||||||
|
|
||||||
insert : A → B → Map → Map
|
|
||||||
insert k v (kvs , uks) = (insert-impl k v kvs , insert-preserves-Unique uks)
|
|
||||||
|
|
||||||
union : Map → Map → Map
|
union : Map → Map → Map
|
||||||
union (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
union (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
||||||
|
|
||||||
|
intersect : Map → Map → Map
|
||||||
|
intersect (kvs₁ , _) (kvs₂ , uks₂) = (intersect-impl kvs₁ kvs₂ , intersect-preserves-Unique {kvs₁} {kvs₂} uks₂)
|
||||||
|
|
||||||
⟦_⟧ : Expr -> Map
|
⟦_⟧ : Expr -> Map
|
||||||
⟦ ` m ⟧ = m
|
⟦ ` m ⟧ = m
|
||||||
⟦ e₁ ∪ e₂ ⟧ = union ⟦ e₁ ⟧ ⟦ e₂ ⟧
|
⟦ e₁ ∪ e₂ ⟧ = union ⟦ e₁ ⟧ ⟦ e₂ ⟧
|
||||||
|
|
Loading…
Reference in New Issue
Block a user