Move < definition to Semilattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
421f187e8b
commit
561d0f343a
16
Lattice.agda
16
Lattice.agda
|
@ -24,6 +24,12 @@ record IsSemilattice {a} (A : Set a)
|
||||||
(_≈_ : A → A → Set a)
|
(_≈_ : A → A → Set a)
|
||||||
(_⊔_ : A → A → A) : Set a where
|
(_⊔_ : A → A → A) : Set a where
|
||||||
|
|
||||||
|
_≼_ : A → A → Set a
|
||||||
|
a ≼ b = Σ A (λ c → (a ⊔ c) ≈ b)
|
||||||
|
|
||||||
|
_≺_ : A → A → Set a
|
||||||
|
a ≺ b = (a ≼ b) × (¬ a ≈ b)
|
||||||
|
|
||||||
field
|
field
|
||||||
≈-equiv : IsEquivalence A _≈_
|
≈-equiv : IsEquivalence A _≈_
|
||||||
|
|
||||||
|
@ -46,7 +52,7 @@ record IsLattice {a} (A : Set a)
|
||||||
absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x
|
absorb-⊓-⊔ : (x y : A) → (x ⊓ (x ⊔ y)) ≈ x
|
||||||
|
|
||||||
open IsSemilattice joinSemilattice public
|
open IsSemilattice joinSemilattice public
|
||||||
open IsSemilattice meetSemilattice public hiding (≈-equiv; ≈-refl; ≈-sym; ≈-trans) renaming
|
open IsSemilattice meetSemilattice public using () renaming
|
||||||
( ⊔-assoc to ⊓-assoc
|
( ⊔-assoc to ⊓-assoc
|
||||||
; ⊔-comm to ⊓-comm
|
; ⊔-comm to ⊓-comm
|
||||||
; ⊔-idemp to ⊓-idemp
|
; ⊔-idemp to ⊓-idemp
|
||||||
|
@ -58,15 +64,9 @@ record IsFiniteHeightLattice {a} (A : Set a)
|
||||||
(_⊔_ : A → A → A)
|
(_⊔_ : A → A → A)
|
||||||
(_⊓_ : A → A → A) : Set (lsuc a) where
|
(_⊓_ : A → A → A) : Set (lsuc a) where
|
||||||
|
|
||||||
_≼_ : A → A → Set a
|
|
||||||
a ≼ b = Σ A (λ c → (a ⊔ c) ≈ b)
|
|
||||||
|
|
||||||
_≺_ : A → A → Set a
|
|
||||||
a ≺ b = (a ≼ b) × (¬ a ≈ b)
|
|
||||||
|
|
||||||
field
|
field
|
||||||
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
isLattice : IsLattice A _≈_ _⊔_ _⊓_
|
||||||
fixedHeight : Height _≺_ h
|
fixedHeight : Height (IsLattice._≺_ isLattice) h
|
||||||
|
|
||||||
open IsLattice isLattice public
|
open IsLattice isLattice public
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user