Move < definition to Semilattice

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-08-20 19:57:26 -07:00
parent 421f187e8b
commit 561d0f343a

View File

@ -24,6 +24,12 @@ record IsSemilattice {a} (A : Set a)
(_≈_ : A A Set a) (_≈_ : A A Set a)
(_⊔_ : A A A) : Set a where (_⊔_ : A A A) : Set a where
_≼_ : A A Set a
a b = Σ A (λ c (a c) b)
_≺_ : A A Set a
a b = (a b) × (¬ a b)
field field
≈-equiv : IsEquivalence A _≈_ ≈-equiv : IsEquivalence A _≈_
@ -46,7 +52,7 @@ record IsLattice {a} (A : Set a)
absorb-⊓-⊔ : (x y : A) (x (x y)) x absorb-⊓-⊔ : (x y : A) (x (x y)) x
open IsSemilattice joinSemilattice public open IsSemilattice joinSemilattice public
open IsSemilattice meetSemilattice public hiding (≈-equiv; ≈-refl; ≈-sym; ≈-trans) renaming open IsSemilattice meetSemilattice public using () renaming
( ⊔-assoc to ⊓-assoc ( ⊔-assoc to ⊓-assoc
; ⊔-comm to ⊓-comm ; ⊔-comm to ⊓-comm
; ⊔-idemp to ⊓-idemp ; ⊔-idemp to ⊓-idemp
@ -58,15 +64,9 @@ record IsFiniteHeightLattice {a} (A : Set a)
(_⊔_ : A A A) (_⊔_ : A A A)
(_⊓_ : A A A) : Set (lsuc a) where (_⊓_ : A A A) : Set (lsuc a) where
_≼_ : A A Set a
a b = Σ A (λ c (a c) b)
_≺_ : A A Set a
a b = (a b) × (¬ a b)
field field
isLattice : IsLattice A _≈_ _⊔_ _⊓_ isLattice : IsLattice A _≈_ _⊔_ _⊓_
fixedHeight : Height _≺_ h fixedHeight : Height (IsLattice._≺_ isLattice) h
open IsLattice isLattice public open IsLattice isLattice public