Prove that AxB is a finite height semilattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
fb86d3f84f
commit
5cab39ca82
|
@ -16,7 +16,7 @@ module _ where
|
||||||
|
|
||||||
data Chain : A → A → ℕ → Set a where
|
data Chain : A → A → ℕ → Set a where
|
||||||
done : ∀ {a a' : A} → a ≈ a' → Chain a a' 0
|
done : ∀ {a a' : A} → a ≈ a' → Chain a a' 0
|
||||||
step : ∀ {a₁ a₂ a₂' a₃ : A} {n : ℕ} → a₁ R a₂ → a₂ ≈ a₂' → Chain a₂ a₃ n → Chain a₁ a₃ (suc n)
|
step : ∀ {a₁ a₂ a₂' a₃ : A} {n : ℕ} → a₁ R a₂ → a₂ ≈ a₂' → Chain a₂' a₃ n → Chain a₁ a₃ (suc n)
|
||||||
|
|
||||||
Chain-≈-cong₁ : ∀ {a₁ a₁' a₂} {n : ℕ} → a₁ ≈ a₁' → Chain a₁ a₂ n → Chain a₁' a₂ n
|
Chain-≈-cong₁ : ∀ {a₁ a₁' a₂} {n : ℕ} → a₁ ≈ a₁' → Chain a₁ a₂ n → Chain a₁' a₂ n
|
||||||
Chain-≈-cong₁ a₁≈a₁' (done a₁≈a₂) = done (≈-trans (≈-sym a₁≈a₁') a₁≈a₂)
|
Chain-≈-cong₁ a₁≈a₁' (done a₁≈a₂) = done (≈-trans (≈-sym a₁≈a₁') a₁≈a₂)
|
||||||
|
|
51
Lattice.agda
51
Lattice.agda
|
@ -4,17 +4,22 @@ open import Equivalence
|
||||||
import Chain
|
import Chain
|
||||||
|
|
||||||
import Data.Nat.Properties as NatProps
|
import Data.Nat.Properties as NatProps
|
||||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; subst)
|
||||||
|
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
|
||||||
open import Relation.Binary.Definitions
|
open import Relation.Binary.Definitions
|
||||||
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
open import Relation.Binary.Core using (_Preserves_⟶_ )
|
||||||
open import Relation.Nullary using (Dec; ¬_)
|
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||||
open import Data.Nat as Nat using (ℕ; _≤_; _+_)
|
open import Data.Nat as Nat using (ℕ; _≤_; _+_; suc)
|
||||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||||
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_)
|
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔ℓ_)
|
||||||
open import Function.Definitions using (Injective)
|
open import Function.Definitions using (Injective)
|
||||||
|
open import Data.Empty using (⊥)
|
||||||
|
|
||||||
record IsDecidable {a} (A : Set a) (R : A → A → Set a) : Set a where
|
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
||||||
|
absurd ()
|
||||||
|
|
||||||
|
record IsDecidable {a} {A : Set a} (R : A → A → Set a) : Set a where
|
||||||
field
|
field
|
||||||
R-dec : ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
R-dec : ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
||||||
|
|
||||||
|
@ -356,20 +361,32 @@ module IsLatticeInstances where
|
||||||
module IsFiniteHeightLatticeInstances where
|
module IsFiniteHeightLatticeInstances where
|
||||||
module ForProd {a} {A B : Set a}
|
module ForProd {a} {A B : Set a}
|
||||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||||||
|
(decA : IsDecidable _≈₁_) (decB : IsDecidable _≈₂_)
|
||||||
(_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A)
|
(_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A)
|
||||||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||||||
(h₁ h₂ : ℕ)
|
(h₁ h₂ : ℕ)
|
||||||
(lA : IsFiniteHeightLattice A h₁ _≈₁_ _⊔₁_ _⊓₁_) (lB : IsFiniteHeightLattice B h₂ _≈₂_ _⊔₂_ _⊓₂_) where
|
(lA : IsFiniteHeightLattice A h₁ _≈₁_ _⊔₁_ _⊓₁_) (lB : IsFiniteHeightLattice B h₂ _≈₂_ _⊔₂_ _⊓₂_) where
|
||||||
|
|
||||||
|
open NatProps
|
||||||
module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB)
|
module ProdLattice = IsLatticeInstances.ForProd _≈₁_ _≈₂_ _⊔₁_ _⊓₁_ _⊔₂_ _⊓₂_ (IsFiniteHeightLattice.isLattice lA) (IsFiniteHeightLattice.isLattice lB)
|
||||||
open ProdLattice using (_⊔_; _⊓_; _≈_) public
|
open ProdLattice using (_⊔_; _⊓_; _≈_) public
|
||||||
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_; ≺-cong; ≈-equiv)
|
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_; ≺-cong; ≈-equiv)
|
||||||
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_; ≈-refl to ≈₁-refl)
|
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_; ≈-equiv to ≈₁-equiv; ≈-refl to ≈₁-refl; ≈-trans to ≈₁-trans; ≈-sym to ≈₁-sym; _≺_ to _≺₁_; ≺-cong to ≺₁-cong)
|
||||||
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_; ≈-refl to ≈₂-refl)
|
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_; ≈-equiv to ≈₂-equiv; ≈-refl to ≈₂-refl; ≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; _≺_ to _≺₂_; ≺-cong to ≺₂-cong)
|
||||||
|
open IsDecidable decA using () renaming (R-dec to ≈₁-dec)
|
||||||
|
open IsDecidable decB using () renaming (R-dec to ≈₂-dec)
|
||||||
|
|
||||||
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||||
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||||
|
|
||||||
|
module ChainA = Chain _≈₁_ ≈₁-equiv _≺₁_ ≺₁-cong
|
||||||
|
module ChainB = Chain _≈₂_ ≈₂-equiv _≺₂_ ≺₂-cong
|
||||||
|
module ProdChain = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||||||
|
|
||||||
|
open ChainA using () renaming (Chain to Chain₁; done to done₁; step to step₁; Chain-≈-cong₁ to Chain₁-≈-cong₁)
|
||||||
|
open ChainB using () renaming (Chain to Chain₂; done to done₂; step to step₂; Chain-≈-cong₁ to Chain₂-≈-cong₁)
|
||||||
|
open ProdChain using (Chain; concat; done; step)
|
||||||
|
|
||||||
private
|
private
|
||||||
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
a,∙-Monotonic : ∀ (a : A) → Monotonic _≼₂_ _≼_ (λ b → (a , b))
|
||||||
a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂))
|
a,∙-Monotonic a {b₁} {b₂} (b , b₁⊔b≈b₂) = ((a , b) , (⊔₁-idemp a , b₁⊔b≈b₂))
|
||||||
|
@ -395,15 +412,33 @@ module IsFiniteHeightLatticeInstances where
|
||||||
bmax : B
|
bmax : B
|
||||||
bmax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))
|
bmax = proj₂ (proj₁ (proj₁ (IsFiniteHeightLattice.fixedHeight lB)))
|
||||||
|
|
||||||
|
unzip : ∀ {a₁ a₂ : A} {b₁ b₂ : B} {n : ℕ} → Chain (a₁ , b₁) (a₂ , b₂) n → Σ (ℕ × ℕ) (λ (n₁ , n₂) → ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n ≤ n₁ + n₂)))
|
||||||
|
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
|
||||||
|
unzip {a₁} {a₂} {b₁} {b₂} {n} (step {(a₁ , b₁)} {(a , b)} (((d₁ , d₂) , (a₁⊔d₁≈a , b₁⊔d₂≈b)) , a₁b₁̷≈ab) (a≈a' , b≈b') a'b'a₂b₂)
|
||||||
|
with ≈₁-dec a₁ a | ≈₂-dec b₁ b | unzip a'b'a₂b₂
|
||||||
|
... | yes a₁≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) = absurd (a₁b₁̷≈ab (a₁≈a , b₁≈b))
|
||||||
|
... | no a₁̷≈a | yes b₁≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||||
|
((suc n₁ , n₂) , ((step₁ ((d₁ , a₁⊔d₁≈a) , a₁̷≈a) a≈a' c₁ , Chain₂-≈-cong₁ (≈₂-sym (≈₂-trans b₁≈b b≈b')) c₂), +-monoʳ-≤ 1 (n≤n₁+n₂)))
|
||||||
|
... | yes a₁≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||||
|
((n₁ , suc n₂) , ( (Chain₁-≈-cong₁ (≈₁-sym (≈₁-trans a₁≈a a≈a')) c₁ , step₂ ((d₂ , b₁⊔d₂≈b) , b₁̷≈b) b≈b' c₂)
|
||||||
|
, subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂)
|
||||||
|
))
|
||||||
|
... | no a₁̷≈a | no b₁̷≈b | ((n₁ , n₂) , ((c₁ , c₂) , n≤n₁+n₂)) =
|
||||||
|
((suc n₁ , suc n₂) , ( (step₁ ((d₁ , a₁⊔d₁≈a) , a₁̷≈a) a≈a' c₁ , step₂ ((d₂ , b₁⊔d₂≈b) , b₁̷≈b) b≈b' c₂)
|
||||||
|
, ≤-stepsˡ 1 (subst (n ≤_) (sym (+-suc n₁ n₂)) (+-monoʳ-≤ 1 n≤n₁+n₂))
|
||||||
|
))
|
||||||
|
|
||||||
ProdIsFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
ProdIsFiniteHeightLattice : IsFiniteHeightLattice (A × B) (h₁ + h₂) _≈_ _⊔_ _⊓_
|
||||||
ProdIsFiniteHeightLattice = record
|
ProdIsFiniteHeightLattice = record
|
||||||
{ isLattice = ProdLattice.ProdIsLattice
|
{ isLattice = ProdLattice.ProdIsLattice
|
||||||
; fixedHeight =
|
; fixedHeight =
|
||||||
( ( ((amin , bmin) , (amax , bmax))
|
( ( ((amin , bmin) , (amax , bmax))
|
||||||
, Chain.concat _≈_ ≈-equiv _≺_ ≺-cong
|
, concat
|
||||||
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))))
|
(ChainMapping₁.Chain-map (λ a → (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lA))))
|
||||||
(ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))))
|
(ChainMapping₂.Chain-map (λ b → (amax , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ (IsFiniteHeightLattice.fixedHeight lB))))
|
||||||
)
|
)
|
||||||
, _
|
, λ a₁b₁a₂b₂ → let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
|
||||||
|
in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ (IsFiniteHeightLattice.fixedHeight lA) a₁a₂)
|
||||||
|
(proj₂ (IsFiniteHeightLattice.fixedHeight lB) b₁b₂))
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user