Rename the min/max elements top bottom and top in Prod

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-05-09 19:08:46 -07:00
parent f4392b32c0
commit 6857f60465

View File

@ -143,17 +143,17 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
∙,b-Preserves-≈₁ : (b : B) (λ a (a , b)) Preserves _≈₁_ _≈_ ∙,b-Preserves-≈₁ : (b : B) (λ a (a , b)) Preserves _≈₁_ _≈_
∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl) ∙,b-Preserves-≈₁ b {a₁} {a₂} a₁≈a₂ = (a₁≈a₂ , ≈₂-refl)
amin : A ⊥₁ : A
amin = proj₁ (proj₁ (proj₁ fhA)) ⊥₁ = proj₁ (proj₁ (proj₁ fhA))
amax : A ⊤₁ : A
amax = proj₂ (proj₁ (proj₁ fhA)) ⊤₁ = proj₂ (proj₁ (proj₁ fhA))
bmin : B ⊥₂ : B
bmin = proj₁ (proj₁ (proj₁ fhB)) ⊥₂ = proj₁ (proj₁ (proj₁ fhB))
bmax : B ⊤₂ : B
bmax = proj₂ (proj₁ (proj₁ fhB)) ⊤₂ = proj₂ (proj₁ (proj₁ fhB))
unzip : {a₁ a₂ : A} {b₁ b₂ : B} {n : } Chain (a₁ , b₁) (a₂ , b₂) n Σ ( × ) (λ (n₁ , n₂) ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n n₁ + n₂))) unzip : {a₁ a₂ : A} {b₁ b₂ : B} {n : } Chain (a₁ , b₁) (a₂ , b₂) n Σ ( × ) (λ (n₁ , n₂) ((Chain₁ a₁ a₂ n₁ × Chain₂ b₁ b₂ n₂) × (n n₁ + n₂)))
unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl)) unzip (done (a₁≈a₂ , b₁≈b₂)) = ((0 , 0) , ((done₁ a₁≈a₂ , done₂ b₁≈b₂) , ≤-refl))
@ -173,10 +173,10 @@ module _ (≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂) fixedHeight : IsLattice.FixedHeight isLattice (h₁ + h₂)
fixedHeight = fixedHeight =
( ( ((amin , bmin) , (amax , bmax)) ( ( ((⊥₁ , ⊥₂) , (⊤₁ , ⊤₂))
, concat , concat
(ChainMapping₁.Chain-map (λ a (a , bmin)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ fhA))) (ChainMapping₁.Chain-map (λ a (a , ⊥₂)) (∙,b-Monotonic _) proj₁ (∙,b-Preserves-≈₁ _) (proj₂ (proj₁ fhA)))
(ChainMapping₂.Chain-map (λ b (amax , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ fhB))) (ChainMapping₂.Chain-map (λ b (⊤₁ , b)) (a,∙-Monotonic _) proj₂ (a,∙-Preserves-≈₂ _) (proj₂ (proj₁ fhB)))
) )
, λ a₁b₁a₂b₂ let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂ , λ a₁b₁a₂b₂ let ((n₁ , n₂) , ((a₁a₂ , b₁b₂) , n≤n₁+n₂)) = unzip a₁b₁a₂b₂
in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ fhA a₁a₂) (proj₂ fhB b₁b₂)) in ≤-trans n≤n₁+n₂ (+-mono-≤ (proj₂ fhA a₁a₂) (proj₂ fhB b₁b₂))