Swich AboveBelow to using instances
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
		
							parent
							
								
									d96eb97b69
								
							
						
					
					
						commit
						70847d51db
					
				@ -13,6 +13,7 @@ open import Relation.Nullary using (¬_; yes; no)
 | 
			
		||||
 | 
			
		||||
open import Language
 | 
			
		||||
open import Lattice
 | 
			
		||||
open import Equivalence
 | 
			
		||||
open import Showable using (Showable; show)
 | 
			
		||||
open import Utils using (_⇒_; _∧_; _∨_)
 | 
			
		||||
import Analysis.Forward
 | 
			
		||||
@ -44,11 +45,19 @@ _≟ᵍ_ 0ˢ + = no (λ ())
 | 
			
		||||
_≟ᵍ_ 0ˢ - = no (λ ())
 | 
			
		||||
_≟ᵍ_ 0ˢ 0ˢ = yes refl
 | 
			
		||||
 | 
			
		||||
≡-Decidable-Sign : IsDecidable {_} {Sign} _≡_
 | 
			
		||||
≡-Decidable-Sign = record { R-dec = _≟ᵍ_ }
 | 
			
		||||
instance
 | 
			
		||||
    ≡-equiv : IsEquivalence Sign _≡_
 | 
			
		||||
    ≡-equiv = record
 | 
			
		||||
        { ≈-refl = refl
 | 
			
		||||
        ; ≈-sym = sym
 | 
			
		||||
        ; ≈-trans = trans
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    ≡-Decidable-Sign : IsDecidable {_} {Sign} _≡_
 | 
			
		||||
    ≡-Decidable-Sign = record { R-dec = _≟ᵍ_ }
 | 
			
		||||
 | 
			
		||||
-- embelish 'sign' with a top and bottom element.
 | 
			
		||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) ≡-Decidable-Sign as AB
 | 
			
		||||
open import Lattice.AboveBelow Sign _ as AB
 | 
			
		||||
    using ()
 | 
			
		||||
    renaming
 | 
			
		||||
        ( AboveBelow to SignLattice
 | 
			
		||||
 | 
			
		||||
@ -1,11 +1,12 @@
 | 
			
		||||
open import Lattice
 | 
			
		||||
open import Equivalence
 | 
			
		||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
 | 
			
		||||
open import Data.Unit using () renaming (⊤ to ⊤ᵘ)
 | 
			
		||||
 | 
			
		||||
module Lattice.AboveBelow {a} (A : Set a)
 | 
			
		||||
                          (_≈₁_ : A → A → Set a)
 | 
			
		||||
                          (≈₁-equiv : IsEquivalence A _≈₁_)
 | 
			
		||||
                          (≈₁-Decidable : IsDecidable _≈₁_) where
 | 
			
		||||
                          {_≈₁_ : A → A → Set a}
 | 
			
		||||
                          {{≈₁-equiv : IsEquivalence A _≈₁_}}
 | 
			
		||||
                          {{≈₁-Decidable : IsDecidable _≈₁_}} (dummy : ⊤ᵘ) where
 | 
			
		||||
 | 
			
		||||
open import Data.Empty using (⊥-elim)
 | 
			
		||||
open import Data.Product using (_,_)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user