Reorder some definitions
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
		
							parent
							
								
									57606636a7
								
							
						
					
					
						commit
						71cb97ad8c
					
				@ -104,12 +104,26 @@ module Graphs where
 | 
			
		||||
            nodes : Vec (List BasicStmt) size
 | 
			
		||||
            edges : List Edge
 | 
			
		||||
 | 
			
		||||
    castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
 | 
			
		||||
    castᵉ p (idx₁ , idx₂) = (castᶠ p idx₁ , castᶠ p idx₂)
 | 
			
		||||
 | 
			
		||||
    ↑ˡ-Edge : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n +ⁿ m) × Fin (n +ⁿ m))
 | 
			
		||||
    ↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
 | 
			
		||||
 | 
			
		||||
    _[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
 | 
			
		||||
    _[_] g idx = lookup (Graph.nodes g) idx
 | 
			
		||||
 | 
			
		||||
    record _⊆_ (g₁ g₂ : Graph) : Set where
 | 
			
		||||
        constructor Mk-⊆
 | 
			
		||||
        field
 | 
			
		||||
            n : ℕ
 | 
			
		||||
            sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ +ⁿ n
 | 
			
		||||
            newNodes : Vec (List BasicStmt) n
 | 
			
		||||
            nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
 | 
			
		||||
            e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
 | 
			
		||||
                        e ∈ˡ (Graph.edges g₁) →
 | 
			
		||||
                        (↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
 | 
			
		||||
 | 
			
		||||
    castᵉ : ∀ {n m : ℕ} .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
 | 
			
		||||
    castᵉ p (idx₁ , idx₂) = (castᶠ p idx₁ , castᶠ p idx₂)
 | 
			
		||||
 | 
			
		||||
    ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s +ⁿ (n₁ +ⁿ n₂) ≡ s +ⁿ n₁ +ⁿ n₂) →
 | 
			
		||||
               f ↑ˡ n₁ ↑ˡ n₂ ≡ castᶠ p (f ↑ˡ (n₁ +ⁿ n₂))
 | 
			
		||||
    ↑ˡ-assoc zero p = refl
 | 
			
		||||
@ -140,20 +154,6 @@ module Graphs where
 | 
			
		||||
        rewrite castᶠ-is-id refl idx₁
 | 
			
		||||
        rewrite castᶠ-is-id refl idx₂ = e∈es
 | 
			
		||||
 | 
			
		||||
    _[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
 | 
			
		||||
    _[_] g idx = lookup (Graph.nodes g) idx
 | 
			
		||||
 | 
			
		||||
    record _⊆_ (g₁ g₂ : Graph) : Set where
 | 
			
		||||
        constructor Mk-⊆
 | 
			
		||||
        field
 | 
			
		||||
            n : ℕ
 | 
			
		||||
            sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ +ⁿ n
 | 
			
		||||
            newNodes : Vec (List BasicStmt) n
 | 
			
		||||
            nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
 | 
			
		||||
            e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
 | 
			
		||||
                        e ∈ˡ (Graph.edges g₁) →
 | 
			
		||||
                        (↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
 | 
			
		||||
 | 
			
		||||
    ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
 | 
			
		||||
    ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
 | 
			
		||||
            (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user