Tweak signature of 'forget' to simplify proofs

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2024-03-07 20:04:33 -08:00
parent 34203840c8
commit 7905d106e2
2 changed files with 20 additions and 20 deletions

View File

@@ -185,7 +185,7 @@ module IterProdIsomorphism where
narrow₂ {fm₁} {fm₂ = (_ fm'₂ , push k≢ks _) , kvs≡ks@refl} kvs₁⊆kvs₂ k' v' k',v'∈fm'₁
with kvs₁⊆kvs₂ k' v' k',v'∈fm'₁
... | (v'' , (v'≈v'' , here refl)) rewrite sym (proj₂ fm₁) =
⊥-elim (All¬-¬Any k≢ks (forget {m = proj₁ fm₁} k',v'∈fm'₁))
⊥-elim (All¬-¬Any k≢ks (forget k',v'∈fm'₁))
... | (v'' , (v'≈v'' , there k',v'∈fm'₂)) =
(v'' , (v'≈v'' , k',v'∈fm'₂))
@@ -196,7 +196,7 @@ module IterProdIsomorphism where
k,v∈pop⇒k,v∈ : {k : A} {ks : List A} {k' : A} {v : B} (fm : FiniteMap (k ks))
(k' , v) ∈ᵐ pop fm (¬ k k' × ((k' , v) ∈ᵐ fm))
k,v∈pop⇒k,v∈ {k} {ks} {k'} {v} (m@((k , _) fm' , push k≢ks uks') , refl) k',v∈fm =
( (λ { refl All¬-¬Any k≢ks (forget {m = (fm' , uks')} k',v∈fm) })
( (λ { refl All¬-¬Any k≢ks (forget k',v∈fm) })
, there k',v∈fm
)
@@ -215,11 +215,11 @@ module IterProdIsomorphism where
Provenance-union fm₁@(m₁ , ks₁≡ks) fm₂@(m₂ , ks₂≡ks) {k} {v} k,v∈fm₁fm₂
with Expr-Provenance-≡ ((` m₁) (` m₂)) k,v∈fm₁fm₂
... | in (single k,v∈m₁) k∉km₂
with k∈km₁ (forget {m = m₁} k,v∈m₁)
with k∈km₁ (forget k,v∈m₁)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₂ k∈km₁)
... | in k∉km₁ (single k,v∈m₂)
with k∈km₂ (forget {m = m₂} k,v∈m₂)
with k∈km₂ (forget k,v∈m₂)
rewrite trans ks₁≡ks (sym ks₂≡ks) =
⊥-elim (k∉km₁ k∈km₂)
... | bothᵘ {v₁} {v₂} (single k,v₁∈m₁) (single k,v₂∈m₂) =
@@ -324,11 +324,9 @@ module IterProdIsomorphism where
| from-first-value (fm₁ ⊔ᵐ fm₂)
| from-first-value fm₁ | from-first-value fm₂
... | (v , k,v∈fm₁fm₂) | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl | refl
with Expr-Provenance k ((` m₁) (` m₂)) (forget {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂)
... | (_ , (in _ k∉km₂ , _)) = ⊥-elim (k∉km₂ (forget {m = m₂}
k,v∈fm))
... | (_ , (in k∉km₁ _ , _)) = ⊥-elim (k∉km₁ (forget {m = m₁}
k,v₁∈fm₁))
with Expr-Provenance k ((` m₁) (` m₂)) (forget k,v∈fm₁fm₂)
... | (_ , (in _ k∉km₂ , _)) = ⊥-elim (k∉km₂ (forget k,v₂∈fm₂))
... | (_ , (in k∉km₁ _ , _)) = ⊥-elim (k∉km₁ (forget k,v∈fm))
... | (v₁⊔v₂ , (bothᵘ {v₁'} {v₂'} (single k,v₁'∈m₁) (single k,v₂'∈m₂) , k,v₁⊔v₂∈m₁m₂))
rewrite Map-functional {m = m₁} k,v₁∈fm₁ k,v₁'∈m₁
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₂'∈m₂
@@ -387,10 +385,10 @@ module IterProdIsomorphism where
(v , (IsLattice.≈-refl lB , here refl))
... | here refl | there k',v₂∈fm₂' =
⊥-elim (All¬-¬Any k≢ks' (subst (k' ∈ˡ_) (proj₂ fm₂')
(forget {m = proj₁ fm₂'} k',v₂∈fm₂')))
(forget k',v₂∈fm₂')))
... | there k',v₁∈fm₁' | here refl =
⊥-elim (All¬-¬Any k≢ks' (subst (k' ∈ˡ_) (proj₂ fm₁')
(forget {m = proj₁ fm₁'} k',v₁∈fm₁')))
(forget k',v₁∈fm₁')))
... | there k',v₁∈fm₁' | there k',v₂∈fm₂' =
let
k',v₁v₂∈fm₁'fm₂' =