Prove that the sign analysis is correct
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
5f946de5e8
commit
7d2928ed81
@ -1,8 +1,8 @@
|
||||
module Analysis.Sign where
|
||||
|
||||
open import Data.Integer using (ℤ; +_; -[1+_])
|
||||
open import Data.Nat using (ℕ; suc; zero)
|
||||
open import Data.Product using (Σ; proj₁; _,_)
|
||||
open import Data.Integer as Int using (ℤ; +_; -[1+_])
|
||||
open import Data.Nat as Nat using (ℕ; suc; zero)
|
||||
open import Data.Product using (Σ; proj₁; proj₂; _,_)
|
||||
open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
@ -115,7 +115,7 @@ postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ
|
||||
⟦_⟧ᵍ ⊥ᵍ _ = ⊥
|
||||
⟦_⟧ᵍ ⊤ᵍ _ = ⊤
|
||||
⟦_⟧ᵍ [ + ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ (suc n)))
|
||||
⟦_⟧ᵍ [ 0ˢ ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ (+_ zero))
|
||||
⟦_⟧ᵍ [ 0ˢ ]ᵍ v = v ≡ ↑ᶻ (+_ zero)
|
||||
⟦_⟧ᵍ [ - ]ᵍ v = Σ ℕ (λ n → v ≡ ↑ᶻ -[1+ n ])
|
||||
|
||||
⟦⟧ᵍ-respects-≈ᵍ : ∀ {s₁ s₂ : SignLattice} → s₁ ≈ᵍ s₂ → ⟦ s₁ ⟧ᵍ ⇒ ⟦ s₂ ⟧ᵍ
|
||||
@ -141,12 +141,12 @@ postulate minus-Monoʳ : ∀ (s₁ : SignLattice) → Monotonic _≼ᵍ_ _≼ᵍ
|
||||
s₁≢s₂⇒¬s₁∧s₂ : ∀ {s₁ s₂ : Sign} → ¬ s₁ ≡ s₂ → ∀ {v} → ¬ ((⟦ [ s₁ ]ᵍ ⟧ᵍ ∧ ⟦ [ s₂ ]ᵍ ⟧ᵍ) v)
|
||||
s₁≢s₂⇒¬s₁∧s₂ { + } { + } +≢+ _ = ⊥-elim (+≢+ refl)
|
||||
s₁≢s₂⇒¬s₁∧s₂ { + } { - } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { + } { 0ˢ } _ ((n , refl) , ())
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { + } _ (refl , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { 0ˢ } +≢+ _ = ⊥-elim (+≢+ refl)
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { 0ˢ } { - } _ (refl , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { - } { + } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , (m , ()))
|
||||
s₁≢s₂⇒¬s₁∧s₂ { - } { 0ˢ } _ ((n , refl) , ())
|
||||
s₁≢s₂⇒¬s₁∧s₂ { - } { - } +≢+ _ = ⊥-elim (+≢+ refl)
|
||||
|
||||
⟦⟧ᵍ-⊓ᵍ-∧ : ∀ {s₁ s₂ : SignLattice} → (⟦ s₁ ⟧ᵍ ∧ ⟦ s₂ ⟧ᵍ) ⇒ ⟦ s₁ ⊓ᵍ s₂ ⟧ᵍ
|
||||
@ -222,7 +222,75 @@ module WithProg (prog : Program) where
|
||||
eval-Mono (# 0) _ = ≈ᵍ-refl
|
||||
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
|
||||
|
||||
open ForwardWithProg.WithEvaluator eval eval-Mono using (result)
|
||||
module ForwardWithEval = ForwardWithProg.WithEvaluator eval eval-Mono
|
||||
open ForwardWithEval using (result)
|
||||
|
||||
-- For debugging purposes, print out the result.
|
||||
output = show result
|
||||
|
||||
module ForwardWithInterp = ForwardWithEval.WithInterpretation latticeInterpretationᵍ
|
||||
open ForwardWithInterp using (⟦_⟧ᵛ; InterpretationValid)
|
||||
|
||||
-- This should have fewer cases -- the same number as the actual 'plus' above.
|
||||
-- But agda only simplifies on first argument, apparently, so we are stuck
|
||||
-- listing them all.
|
||||
plus-valid : ∀ {g₁ g₂} {z₁ z₂} → ⟦ g₁ ⟧ᵍ (↑ᶻ z₁) → ⟦ g₂ ⟧ᵍ (↑ᶻ z₂) → ⟦ plus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.+ z₂))
|
||||
plus-valid {⊥ᵍ} {_} ⊥ _ = ⊥
|
||||
plus-valid {[ + ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {[ - ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {⊤ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
plus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
plus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
plus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
|
||||
plus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
|
||||
plus-valid {[ + ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ + ]ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
plus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
plus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
plus-valid {[ - ]ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
plus-valid {[ - ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
plus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
plus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
plus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
|
||||
plus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
|
||||
-- Same for this one. It should be easier, but Agda won't simplify.
|
||||
minus-valid : ∀ {g₁ g₂} {z₁ z₂} → ⟦ g₁ ⟧ᵍ (↑ᶻ z₁) → ⟦ g₂ ⟧ᵍ (↑ᶻ z₂) → ⟦ minus g₁ g₂ ⟧ᵍ (↑ᶻ (z₁ Int.- z₂))
|
||||
minus-valid {⊥ᵍ} {_} ⊥ _ = ⊥
|
||||
minus-valid {[ + ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {[ - ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {[ 0ˢ ]ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {⊤ᵍ} {⊥ᵍ} _ ⊥ = ⊥
|
||||
minus-valid {⊤ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
minus-valid {⊤ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
minus-valid {⊤ᵍ} {[ 0ˢ ]ᵍ} _ _ = tt
|
||||
minus-valid {⊤ᵍ} {⊤ᵍ} _ _ = tt
|
||||
minus-valid {[ + ]ᵍ} {[ + ]ᵍ} _ _ = tt
|
||||
minus-valid {[ + ]ᵍ} {[ - ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ + ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
minus-valid {[ + ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
minus-valid {[ - ]ᵍ} {[ + ]ᵍ} (n₁ , refl) (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ - ]ᵍ} {[ - ]ᵍ} _ _ = tt
|
||||
minus-valid {[ - ]ᵍ} {[ 0ˢ ]ᵍ} (n₁ , refl) refl = (_ , refl)
|
||||
minus-valid {[ - ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
minus-valid {[ 0ˢ ]ᵍ} {[ + ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ 0ˢ ]ᵍ} {[ - ]ᵍ} refl (n₂ , refl) = (_ , refl)
|
||||
minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
|
||||
minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
|
||||
|
||||
eval-Valid : InterpretationValid
|
||||
eval-Valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
|
||||
plus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
|
||||
eval-Valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
|
||||
minus-valid (eval-Valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-Valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
|
||||
eval-Valid {vs} (⇒ᵉ-Var ρ x v x,v∈ρ) ⟦vs⟧ρ
|
||||
with ∈k-decᵛ x (proj₁ (proj₁ vs))
|
||||
... | yes x∈kvs = ⟦vs⟧ρ (proj₂ (locateᵛ {x} {vs} x∈kvs)) x,v∈ρ
|
||||
... | no x∉kvs = tt
|
||||
eval-Valid (⇒ᵉ-ℕ ρ 0) _ = refl
|
||||
eval-Valid (⇒ᵉ-ℕ ρ (suc n')) _ = (n' , refl)
|
||||
|
||||
open ForwardWithInterp.WithValidity eval-Valid using (analyze-correct) public
|
||||
|
Loading…
Reference in New Issue
Block a user