Rename 'a' to 'b' in fixedpoint algorithm proof
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
12971450e3
commit
828b652d3b
|
@ -73,15 +73,15 @@ aᶠ≈faᶠ : aᶠ ≈ f aᶠ
|
||||||
aᶠ≈faᶠ = proj₂ fix
|
aᶠ≈faᶠ = proj₂ fix
|
||||||
|
|
||||||
private
|
private
|
||||||
stepPreservesLess : ∀ (g hᶜ : ℕ) (a₁ a₂ a : A) (a≈fa : a ≈ f a) (a₂≼a : a₂ ≼ a)
|
stepPreservesLess : ∀ (g hᶜ : ℕ) (a₁ a₂ b : A) (b≈fb : b ≈ f b) (a₂≼a : a₂ ≼ b)
|
||||||
(c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h)
|
(c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ ≡ suc h)
|
||||||
(a₂≼fa₂ : a₂ ≼ f a₂) →
|
(a₂≼fa₂ : a₂ ≼ f a₂) →
|
||||||
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) ≼ a
|
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) ≼ b
|
||||||
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
|
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
|
||||||
stepPreservesLess (suc g') hᶜ a₁ a₂ a a≈fa a₂≼a c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
stepPreservesLess (suc g') hᶜ a₁ a₂ b b≈fb a₂≼b c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
|
||||||
with ≈-dec a₂ (f a₂)
|
with ≈-dec a₂ (f a₂)
|
||||||
... | yes _ = a₂≼a
|
... | yes _ = a₂≼b
|
||||||
... | no _ = stepPreservesLess g' _ _ _ a a≈fa (≼-cong ≈-refl (≈-sym a≈fa) (Monotonicᶠ a₂≼a)) _ _ _
|
... | no _ = stepPreservesLess g' _ _ _ b b≈fb (≼-cong ≈-refl (≈-sym b≈fb) (Monotonicᶠ a₂≼b)) _ _ _
|
||||||
|
|
||||||
aᶠ≼ : ∀ (a : A) → a ≈ f a → aᶠ ≼ a
|
aᶠ≼ : ∀ (a : A) → a ≈ f a → aᶠ ≼ a
|
||||||
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥ᴬ≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥ᴬ≼ (f ⊥ᴬ))
|
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥ᴬ≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥ᴬ≼ (f ⊥ᴬ))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user