Rename 'a' to 'b' in fixedpoint algorithm proof

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-08-18 10:28:45 -10:00
parent 12971450e3
commit 828b652d3b

View File

@ -73,15 +73,15 @@ aᶠ≈faᶠ : aᶠ ≈ f aᶠ
aᶠ≈faᶠ = proj₂ fix
private
stepPreservesLess : (g hᶜ : ) (a₁ a₂ a : A) (a≈fa : a f a) (a₂≼a : a₂ a)
stepPreservesLess : (g hᶜ : ) (a₁ a₂ b : A) (b≈fb : b f b) (a₂≼a : a₂ b)
(c : ChainA.Chain a₁ a₂ hᶜ) (g+hᶜ≡h : g + hᶜ suc h)
(a₂≼fa₂ : a₂ f a₂)
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) a
proj₁ (doStep g hᶜ a₁ a₂ c g+hᶜ≡h a₂≼fa₂) b
stepPreservesLess 0 _ _ _ _ _ _ c g+hᶜ≡sh _ rewrite g+hᶜ≡sh = ⊥-elim (ChainA.Bounded-suc-n boundedᴬ c)
stepPreservesLess (suc g') hᶜ a₁ a₂ a a≈fa a₂≼a c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
stepPreservesLess (suc g') hᶜ a₁ a₂ b b≈fb a₂≼b c g+hᶜ≡sh a₂≼fa₂ rewrite sym (+-suc g' hᶜ)
with ≈-dec a₂ (f a₂)
... | yes _ = a₂≼a
... | no _ = stepPreservesLess g' _ _ _ a a≈fa (≼-cong ≈-refl (≈-sym a≈fa) (Monotonicᶠ a₂≼a)) _ _ _
... | yes _ = a₂≼b
... | no _ = stepPreservesLess g' _ _ _ b b≈fb (≼-cong ≈-refl (≈-sym b≈fb) (Monotonicᶠ a₂≼b)) _ _ _
aᶠ≼ : (a : A) a f a aᶠ a
aᶠ≼ a a≈fa = stepPreservesLess (suc h) 0 ⊥ᴬ ⊥ᴬ a a≈fa (⊥ᴬ≼ a) (ChainA.done ≈-refl) (+-comm (suc h) 0) (⊥ᴬ≼ (f ⊥ᴬ))