Prove final postulate about cycles in graphs

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2025-11-29 22:46:49 -08:00
parent a277c8f969
commit 84c4ea6936

View File

@ -12,7 +12,7 @@ open import Data.List.NonEmpty using (List⁺; tail; toList) renaming (_∷_ to
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_; mapWith∈ to mapWith∈ˡ) open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_; mapWith∈ to mapWith∈ˡ)
open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ; ∈-++⁺ˡ to ∈ˡ-++⁺ˡ; ∈-cartesianProductWith⁺ to ∈ˡ-cartesianProductWith⁺) open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ; ∈-++⁺ˡ to ∈ˡ-++⁺ˡ; ∈-cartesianProductWith⁺ to ∈ˡ-cartesianProductWith⁺)
open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; lookup; zipWith) open import Data.List.Relation.Unary.All using (All; []; _∷_; map; lookup; zipWith; tabulate)
open import Data.List.Relation.Unary.All.Properties using () renaming (++⁺ to ++ˡ⁺; ++⁻ʳ to ++ˡ⁻ʳ) open import Data.List.Relation.Unary.All.Properties using () renaming (++⁺ to ++ˡ⁺; ++⁻ʳ to ++ˡ⁻ʳ)
open import Data.List using (List; _∷_; []; cartesianProduct; cartesianProductWith; foldr) renaming (_++_ to _++ˡ_) open import Data.List using (List; _∷_; []; cartesianProduct; cartesianProductWith; foldr) renaming (_++_ to _++ˡ_)
open import Data.List.Properties using () renaming (++-conicalʳ to ++ˡ-conicalʳ; ++-identityʳ to ++ˡ-identityʳ; ++-assoc to ++ˡ-assoc) open import Data.List.Properties using () renaming (++-conicalʳ to ++ˡ-conicalʳ; ++-identityʳ to ++ˡ-identityʳ; ++-assoc to ++ˡ-assoc)
@ -21,6 +21,7 @@ open import Data.Product using (Σ; _,_; _×_; proj₁; proj₂; uncurry)
open import Data.Empty using (⊥; ⊥-elim) open import Data.Empty using (⊥; ⊥-elim)
open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔_) open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔_)
record Graph : Set where record Graph : Set where
@ -151,7 +152,40 @@ record Graph : Set where
SplitSimpleWalkVia (step n₁,n₂∈edges done , (_ , _)) = inj₂ ((step n₁,n₂∈edges done , (empty , [])) , refl) SplitSimpleWalkVia (step n₁,n₂∈edges done , (_ , _)) = inj₂ ((step n₁,n₂∈edges done , (empty , [])) , refl)
SplitSimpleWalkVia w@(step {n₂ = nⁱ} n₁,nⁱ∈edges p@(step _ _) , (push nⁱ≢intp Unique-intp , nⁱ∈ns intp⊆ns)) = SplitSimpleWalkViaHelp nⁱ w (step n₁,nⁱ∈edges done) p (λ {()}) (λ {()}) [] refl SplitSimpleWalkVia w@(step {n₂ = nⁱ} n₁,nⁱ∈edges p@(step _ _) , (push nⁱ≢intp Unique-intp , nⁱ∈ns intp⊆ns)) = SplitSimpleWalkViaHelp nⁱ w (step n₁,nⁱ∈edges done) p (λ {()}) (λ {()}) [] refl
postulate findCycle : {n₁ n₂} (p : Path n₁ n₂) (Σ (SimpleWalkVia (proj₁ nodes) n₁ n₂) λ w proj₁ w p) (Σ Node (λ n Σ (SimpleWalkVia (proj₁ nodes) n n) λ w ¬ proj₁ w done)) open import Data.List.Membership.DecSetoid (decSetoid {A = Node} _≟_) using () renaming (_∈?_ to _∈ˡ?_)
splitFromInterior : {n₁ n₂ n} (p : Path n₁ n₂) n ∈ˡ (interior p)
Σ (Path n n₂) (λ p' ¬ IsDone p' × (Σ (List Node) λ ns interior p ns ++ˡ interior p'))
splitFromInterior done ()
splitFromInterior (step _ done) ()
splitFromInterior (step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) (here refl) = (p' , ((λ {()}) , (n' [] , refl)))
splitFromInterior (step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) (there n∈intp')
with (p'' , (¬IsDone-p'' , (ns , intp'≡ns++intp''))) splitFromInterior p' n∈intp'
rewrite intp'≡ns++intp'' = (p'' , (¬IsDone-p'' , (n' ns , refl)))
findCycleHelp : {n₁ nⁱ n₂} (p : Path n₁ n₂) (p₁ : Path n₁ nⁱ) (p₂ : Path nⁱ n₂)
¬ IsDone p₁ Unique (interior p₁)
p p₁ ++ p₂
(Σ (SimpleWalkVia (proj₁ nodes) n₁ n₂) λ w proj₁ w p) (Σ Node (λ n Σ (SimpleWalkVia (proj₁ nodes) n n) λ w ¬ IsDone (proj₁ w)))
findCycleHelp p p₁ done ¬IsDonep₁ Unique-intp₁ p≡p₁++done rewrite ++-done p₁ = inj₁ ((p₁ , (Unique-intp₁ , tabulate (λ {x} _ nodes-complete x))) , sym p≡p₁++done)
findCycleHelp {nⁱ = nⁱ} p p₁ (step nⁱ,nⁱ'∈edges p₂') ¬IsDone-p₁ Unique-intp₁ p≡p₁++p₂
with nⁱ ∈ˡ? interior p₁
... | no nⁱ∉intp₁ =
let p₁' = p₁ ++ step nⁱ,nⁱ'∈edges done
intp₁'≡intp₁++[nⁱ] = subst (λ xs interior p₁' interior p₁ ++ˡ xs) (++ˡ-identityʳ (nⁱ [])) (interior-++ p₁ (step nⁱ,nⁱ'∈edges done) ¬IsDone-p₁ (λ {()}))
¬IsDone-p₁' = IsDone-++ˡ p₁ (step nⁱ,nⁱ'∈edges done) ¬IsDone-p₁
p≡p₁'++p₂' = trans p≡p₁++p₂ (sym (++-assoc p₁ (step nⁱ,nⁱ'∈edges done) p₂'))
in findCycleHelp p p₁' p₂' ¬IsDone-p₁' (subst Unique (sym intp₁'≡intp₁++[nⁱ]) (Unique-append nⁱ∉intp₁ Unique-intp₁)) p≡p₁'++p₂'
... | yes nⁱ∈intp₁
with (pᶜ , (¬IsDone-pᶜ , (ns , intp₁≡ns++intpᶜ))) splitFromInterior p₁ nⁱ∈intp₁ =
let Unique-intp₁' = subst Unique intp₁≡ns++intpᶜ Unique-intp₁
in inj₂ (nⁱ , ((pᶜ , (Unique-++⁻ʳ ns Unique-intp₁' , tabulate (λ {x} _ nodes-complete x))) , ¬IsDone-pᶜ))
findCycle : {n₁ n₂} (p : Path n₁ n₂) (Σ (SimpleWalkVia (proj₁ nodes) n₁ n₂) λ w proj₁ w p) (Σ Node (λ n Σ (SimpleWalkVia (proj₁ nodes) n n) λ w ¬ IsDone (proj₁ w)))
findCycle done = inj₁ ((done , (empty , [])) , refl)
findCycle (step n₁,n₂∈edges done) = inj₁ ((step n₁,n₂∈edges done , (empty , [])) , refl)
findCycle p@(step {n₂ = n'} n₁,n'∈edges p'@(step _ _)) = findCycleHelp p (step n₁,n'∈edges done) p' (λ {()}) empty refl
Adjacency : Set Adjacency : Set
Adjacency = (n₁ n₂ : Node) List (Path n₁ n₂) Adjacency = (n₁ n₂ : Node) List (Path n₁ n₂)
@ -239,7 +273,7 @@ record Graph : Set where
adj = throughAll (proj₁ nodes) adj = throughAll (proj₁ nodes)
NoCycles : Set NoCycles : Set
NoCycles = (n : Node) All (_≡ done) (adj n n) NoCycles = (n : Node) All IsDone (adj n n)
NoCycles⇒adj-complete : NoCycles {n₁ n₂} {p : Path n₁ n₂} p ∈ˡ adj n₁ n₂ NoCycles⇒adj-complete : NoCycles {n₁ n₂} {p : Path n₁ n₂} p ∈ˡ adj n₁ n₂
NoCycles⇒adj-complete noCycles {n₁} {n₂} {p} NoCycles⇒adj-complete noCycles {n₁} {n₂} {p}