Simplify AboveBelow a bit to avoid nested modules
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
3305de4710
commit
8515491327
@ -42,22 +42,18 @@ open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = s
|
||||
; ⊥ to ⊥ᵍ
|
||||
; ⊤ to ⊤ᵍ
|
||||
; [_] to [_]ᵍ
|
||||
; _≈_ to _≈ᵍ_
|
||||
; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ
|
||||
; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ
|
||||
; ≈-lift to ≈ᵍ-lift
|
||||
; ≈-refl to ≈ᵍ-refl
|
||||
)
|
||||
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
||||
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
|
||||
|
||||
finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ
|
||||
|
||||
open FiniteHeightLattice finiteHeightLatticeᵍ
|
||||
using ()
|
||||
open AB.Plain 0ˢ using ()
|
||||
renaming
|
||||
( _≼_ to _≼ᵍ_
|
||||
; _≈_ to _≈ᵍ_
|
||||
( finiteHeightLattice to finiteHeightLatticeᵍ
|
||||
; _≼_ to _≼ᵍ_
|
||||
; _⊔_ to _⊔ᵍ_
|
||||
; ≈-refl to ≈ᵍ-refl
|
||||
)
|
||||
|
||||
plus : SignLattice → SignLattice → SignLattice
|
||||
|
@ -68,7 +68,10 @@ data _≈_ : AboveBelow → AboveBelow → Set a where
|
||||
-- Any object can be wrapped in an 'above below' to make it a lattice,
|
||||
-- since ⊤ and ⊥ are the largest and least elements, and the rest are left
|
||||
-- unordered. That's what this module does.
|
||||
module Plain where
|
||||
--
|
||||
-- For convenience, ask for the underlying type to always be inhabited, to
|
||||
-- avoid requiring additional constraints in some of the proofs below.
|
||||
module Plain (x : A) where
|
||||
_⊔_ : AboveBelow → AboveBelow → AboveBelow
|
||||
⊥ ⊔ x = x
|
||||
⊤ ⊔ x = ⊤
|
||||
@ -296,7 +299,7 @@ module Plain where
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
open IsLattice isLattice using (_≼_; _≺_)
|
||||
open IsLattice isLattice using (_≼_; _≺_) public
|
||||
|
||||
⊥≺[x] : ∀ (x : A) → ⊥ ≺ [ x ]
|
||||
⊥≺[x] x = (≈-refl , λ ())
|
||||
@ -322,36 +325,35 @@ module Plain where
|
||||
|
||||
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
|
||||
|
||||
module _ (x : A) where
|
||||
longestChain : Chain ⊥ ⊤ 2
|
||||
longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-⊤-⊤ (done ≈-⊤-⊤))
|
||||
longestChain : Chain ⊥ ⊤ 2
|
||||
longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-⊤-⊤ (done ≈-⊤-⊤))
|
||||
|
||||
¬-Chain-⊤ : ∀ {ab : AboveBelow} {n : ℕ} → ¬ Chain ⊤ ab (suc n)
|
||||
¬-Chain-⊤ {x} (step (⊤⊔x≈x , ⊤̷≈x) _ _) rewrite ⊤⊔x≡⊤ x = ⊥-elim (⊤̷≈x ⊤⊔x≈x)
|
||||
¬-Chain-⊤ : ∀ {ab : AboveBelow} {n : ℕ} → ¬ Chain ⊤ ab (suc n)
|
||||
¬-Chain-⊤ {x} (step (⊤⊔x≈x , ⊤̷≈x) _ _) rewrite ⊤⊔x≡⊤ x = ⊥-elim (⊤̷≈x ⊤⊔x≈x)
|
||||
|
||||
isLongest : ∀ {ab₁ ab₂ : AboveBelow} {n : ℕ} → Chain ab₁ ab₂ n → n ≤ 2
|
||||
isLongest (done _) = z≤n
|
||||
isLongest (step _ _ (done _)) = s≤s z≤n
|
||||
isLongest (step _ _ (step _ _ (done _))) = s≤s (s≤s z≤n)
|
||||
isLongest {⊤} c@(step _ _ _) = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {[ x ]} (step {_} {y} [x]≺y y≈y' c@(step _ _ _))
|
||||
rewrite [x]≺y⇒y≡⊤ x y [x]≺y with ≈-⊤-⊤ ← y≈y' = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {⊥} (step {_} {⊥} (_ , ⊥̷≈⊥) _ _) = ⊥-elim (⊥̷≈⊥ ≈-⊥-⊥)
|
||||
isLongest {⊥} (step {_} {⊤} _ ≈-⊤-⊤ c@(step _ _ _)) = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {⊥} (step {_} {[ x ]} _ (≈-lift _) (step [x]≺y y≈z c@(step _ _ _)))
|
||||
rewrite [x]≺y⇒y≡⊤ _ _ [x]≺y with ≈-⊤-⊤ ← y≈z = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest : ∀ {ab₁ ab₂ : AboveBelow} {n : ℕ} → Chain ab₁ ab₂ n → n ≤ 2
|
||||
isLongest (done _) = z≤n
|
||||
isLongest (step _ _ (done _)) = s≤s z≤n
|
||||
isLongest (step _ _ (step _ _ (done _))) = s≤s (s≤s z≤n)
|
||||
isLongest {⊤} c@(step _ _ _) = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {[ x ]} (step {_} {y} [x]≺y y≈y' c@(step _ _ _))
|
||||
rewrite [x]≺y⇒y≡⊤ x y [x]≺y with ≈-⊤-⊤ ← y≈y' = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {⊥} (step {_} {⊥} (_ , ⊥̷≈⊥) _ _) = ⊥-elim (⊥̷≈⊥ ≈-⊥-⊥)
|
||||
isLongest {⊥} (step {_} {⊤} _ ≈-⊤-⊤ c@(step _ _ _)) = ⊥-elim (¬-Chain-⊤ c)
|
||||
isLongest {⊥} (step {_} {[ x ]} _ (≈-lift _) (step [x]≺y y≈z c@(step _ _ _)))
|
||||
rewrite [x]≺y⇒y≡⊤ _ _ [x]≺y with ≈-⊤-⊤ ← y≈z = ⊥-elim (¬-Chain-⊤ c)
|
||||
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = (((⊥ , ⊤) , longestChain) , isLongest)
|
||||
}
|
||||
isFiniteHeightLattice : IsFiniteHeightLattice AboveBelow 2 _≈_ _⊔_ _⊓_
|
||||
isFiniteHeightLattice = record
|
||||
{ isLattice = isLattice
|
||||
; fixedHeight = (((⊥ , ⊤) , longestChain) , isLongest)
|
||||
}
|
||||
|
||||
finiteHeightLattice : FiniteHeightLattice AboveBelow
|
||||
finiteHeightLattice = record
|
||||
{ height = 2
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
finiteHeightLattice : FiniteHeightLattice AboveBelow
|
||||
finiteHeightLattice = record
|
||||
{ height = 2
|
||||
; _≈_ = _≈_
|
||||
; _⊔_ = _⊔_
|
||||
; _⊓_ = _⊓_
|
||||
; isFiniteHeightLattice = isFiniteHeightLattice
|
||||
}
|
||||
|
@ -22,15 +22,13 @@ xyzw-Unique = push ((λ ()) ∷ (λ ()) ∷ (λ ()) ∷ []) (push ((λ ()) ∷ (
|
||||
open import Lattice using (IsFiniteHeightLattice; FiniteHeightLattice; Monotonic)
|
||||
|
||||
open import Lattice.AboveBelow ⊤ _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵘ_ as AB using () renaming (≈-dec to ≈ᵘ-dec)
|
||||
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵘ)
|
||||
open AB.Plain (Data.Unit.tt) using () renaming (finiteHeightLattice to fhlᵘ)
|
||||
|
||||
showAboveBelow : AB.AboveBelow → String
|
||||
showAboveBelow AB.⊤ = "⊤"
|
||||
showAboveBelow AB.⊥ = "⊥"
|
||||
showAboveBelow (AB.[_] tt) = "()"
|
||||
|
||||
fhlᵘ = finiteHeightLatticeᵘ (Data.Unit.tt)
|
||||
|
||||
import Lattice.Bundles.FiniteValueMap
|
||||
open Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice String AB.AboveBelow _≟ˢ_ fhlᵘ xyzw-Unique ≈ᵘ-dec using (FiniteMap; ≈-dec) renaming (finiteHeightLattice to fhlⁱᵖ)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user