Simplify AboveBelow a bit to avoid nested modules
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
3305de4710
commit
8515491327
|
@ -42,22 +42,18 @@ open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = s
|
|||
; ⊥ to ⊥ᵍ
|
||||
; ⊤ to ⊤ᵍ
|
||||
; [_] to [_]ᵍ
|
||||
; _≈_ to _≈ᵍ_
|
||||
; ≈-⊥-⊥ to ≈ᵍ-⊥ᵍ-⊥ᵍ
|
||||
; ≈-⊤-⊤ to ≈ᵍ-⊤ᵍ-⊤ᵍ
|
||||
; ≈-lift to ≈ᵍ-lift
|
||||
; ≈-refl to ≈ᵍ-refl
|
||||
)
|
||||
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
||||
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
|
||||
|
||||
finiteHeightLatticeᵍ = finiteHeightLatticeᵍ-if-inhabited 0ˢ
|
||||
|
||||
open FiniteHeightLattice finiteHeightLatticeᵍ
|
||||
using ()
|
||||
open AB.Plain 0ˢ using ()
|
||||
renaming
|
||||
( _≼_ to _≼ᵍ_
|
||||
; _≈_ to _≈ᵍ_
|
||||
( finiteHeightLattice to finiteHeightLatticeᵍ
|
||||
; _≼_ to _≼ᵍ_
|
||||
; _⊔_ to _⊔ᵍ_
|
||||
; ≈-refl to ≈ᵍ-refl
|
||||
)
|
||||
|
||||
plus : SignLattice → SignLattice → SignLattice
|
||||
|
|
|
@ -68,7 +68,10 @@ data _≈_ : AboveBelow → AboveBelow → Set a where
|
|||
-- Any object can be wrapped in an 'above below' to make it a lattice,
|
||||
-- since ⊤ and ⊥ are the largest and least elements, and the rest are left
|
||||
-- unordered. That's what this module does.
|
||||
module Plain where
|
||||
--
|
||||
-- For convenience, ask for the underlying type to always be inhabited, to
|
||||
-- avoid requiring additional constraints in some of the proofs below.
|
||||
module Plain (x : A) where
|
||||
_⊔_ : AboveBelow → AboveBelow → AboveBelow
|
||||
⊥ ⊔ x = x
|
||||
⊤ ⊔ x = ⊤
|
||||
|
@ -296,7 +299,7 @@ module Plain where
|
|||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
open IsLattice isLattice using (_≼_; _≺_)
|
||||
open IsLattice isLattice using (_≼_; _≺_) public
|
||||
|
||||
⊥≺[x] : ∀ (x : A) → ⊥ ≺ [ x ]
|
||||
⊥≺[x] x = (≈-refl , λ ())
|
||||
|
@ -322,7 +325,6 @@ module Plain where
|
|||
|
||||
open Chain _≈_ ≈-equiv (IsLattice._≺_ isLattice) (IsLattice.≺-cong isLattice)
|
||||
|
||||
module _ (x : A) where
|
||||
longestChain : Chain ⊥ ⊤ 2
|
||||
longestChain = step (⊥≺[x] x) ≈-refl (step ([x]≺⊤ x) ≈-⊤-⊤ (done ≈-⊤-⊤))
|
||||
|
||||
|
|
|
@ -22,15 +22,13 @@ xyzw-Unique = push ((λ ()) ∷ (λ ()) ∷ (λ ()) ∷ []) (push ((λ ()) ∷ (
|
|||
open import Lattice using (IsFiniteHeightLattice; FiniteHeightLattice; Monotonic)
|
||||
|
||||
open import Lattice.AboveBelow ⊤ _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵘ_ as AB using () renaming (≈-dec to ≈ᵘ-dec)
|
||||
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵘ)
|
||||
open AB.Plain (Data.Unit.tt) using () renaming (finiteHeightLattice to fhlᵘ)
|
||||
|
||||
showAboveBelow : AB.AboveBelow → String
|
||||
showAboveBelow AB.⊤ = "⊤"
|
||||
showAboveBelow AB.⊥ = "⊥"
|
||||
showAboveBelow (AB.[_] tt) = "()"
|
||||
|
||||
fhlᵘ = finiteHeightLatticeᵘ (Data.Unit.tt)
|
||||
|
||||
import Lattice.Bundles.FiniteValueMap
|
||||
open Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice String AB.AboveBelow _≟ˢ_ fhlᵘ xyzw-Unique ≈ᵘ-dec using (FiniteMap; ≈-dec) renaming (finiteHeightLattice to fhlⁱᵖ)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user