Add functions to reason about the 'monotonic state' operations
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
2f91ca113e
commit
855bf3f56c
@ -87,6 +87,10 @@ Both : {T₁ T₂ : S → Set s} → DependentPredicate T₁ → DependentPredic
|
||||
DependentPredicate (T₁ ⊗ T₂)
|
||||
Both P Q = (λ { s (t₁ , t₂) → (P s t₁ × Q s t₂) })
|
||||
|
||||
And : {T : S → Set s} → DependentPredicate T → DependentPredicate T →
|
||||
DependentPredicate T
|
||||
And P Q = (λ { s t → (P s t × Q s t) })
|
||||
|
||||
-- Since monotnic functions keep adding on to the state, proofs of
|
||||
-- predicates over their outputs go stale fast (they describe old values of
|
||||
-- the state). To keep them relevant, we need them to still hold on 'bigger
|
||||
@ -103,14 +107,42 @@ record MonotonicPredicate {T : S → Set s} {{ r : Relaxable T }} (P : Dependent
|
||||
always : ∀ {T : S → Set s} → DependentPredicate T → MonotonicState T → Set s
|
||||
always P m = ∀ s₁ → let (s₂ , t , _) = m s₁ in P s₂ t
|
||||
|
||||
⟨⊗⟩-reason : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
|
||||
infixr 4 _⟨⊗⟩-reason_
|
||||
_⟨⊗⟩-reason_ : ∀ {T₁ T₂ : S → Set s} {{ _ : Relaxable T₁ }}
|
||||
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
||||
{{P-Mono : MonotonicPredicate P}}
|
||||
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂} →
|
||||
always P m₁ → always Q m₂ → always (Both P Q) (m₁ ⟨⊗⟩ m₂)
|
||||
⟨⊗⟩-reason {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
|
||||
_⟨⊗⟩-reason_ {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} aP aQ s
|
||||
with p ← aP s
|
||||
with (s' , (t₁ , s≼s')) ← m₁ s
|
||||
with q ← aQ s'
|
||||
with (s'' , (t₂ , s'≼s'')) ← m₂ s' =
|
||||
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
|
||||
|
||||
infixl 4 _update-reason_
|
||||
_update-reason_ : ∀ {T : S → Set s} {{ r : Relaxable T }} →
|
||||
{P : DependentPredicate T} {Q : DependentPredicate T}
|
||||
{{P-Mono : MonotonicPredicate P}}
|
||||
{m : MonotonicState T} {mod : ∀ (s : S) → T s → Σ S (λ s' → s ≼ s')} →
|
||||
always P m → (∀ (s : S) (t : T s) →
|
||||
let (s' , s≼s') = mod s t
|
||||
in P s t → Q s' (Relaxable.relax r s≼s' t)) →
|
||||
always (And P Q) (m update mod)
|
||||
_update-reason_ {{r = r}} {{P-Mono = P-Mono}} {m = m} {mod = mod} aP modQ s
|
||||
with p ← aP s
|
||||
with (s' , (t , s≼s')) ← m s
|
||||
with q ← modQ s' t p
|
||||
with (s'' , s'≼s'') ← mod s' t =
|
||||
(MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p , q)
|
||||
|
||||
infixl 4 _map-reason_
|
||||
_map-reason_ : ∀ {T₁ T₂ : S → Set s}
|
||||
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
|
||||
{m : MonotonicState T₁}
|
||||
{f : ∀ (s : S) → T₁ s → T₂ s} →
|
||||
always P m → (∀ (s : S) (t₁ : T₁ s) (t₂ : T₂ s) → P s t₁ → Q s t₂) →
|
||||
always Q (m map f)
|
||||
_map-reason_ {m = m} {f = f} aP P⇒Q s
|
||||
with p ← aP s
|
||||
with (s' , (t₁ , s≼s')) ← m s = P⇒Q s' t₁ (f s' t₁) p
|
||||
|
Loading…
Reference in New Issue
Block a user