Add a lemma about chains of length h+1
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
266c3dd81e
commit
866bc9124a
|
@ -7,8 +7,10 @@ module Chain {a} {A : Set a}
|
|||
(R-≈-cong : ∀ {a₁ a₁' a₂ a₂'} → a₁ ≈ a₁' → a₂ ≈ a₂' → a₁ R a₂ → a₁' R a₂') where
|
||||
|
||||
open import Data.Nat as Nat using (ℕ; suc; _+_; _≤_)
|
||||
open import Data.Nat.Properties using (+-comm; m+1+n≰m)
|
||||
open import Data.Product using (_×_; Σ; _,_)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
|
||||
open import Data.Empty using (⊥)
|
||||
|
||||
open IsEquivalence ≈-equiv
|
||||
|
||||
|
@ -36,5 +38,11 @@ module _ where
|
|||
Bounded : ℕ → Set a
|
||||
Bounded bound = ∀ {a₁ a₂ : A} {n : ℕ} → Chain a₁ a₂ n → n ≤ bound
|
||||
|
||||
Bounded-suc-n : ∀ {a₁ a₂ : A} {n : ℕ} → Bounded n → Chain a₁ a₂ (suc n) → ⊥
|
||||
Bounded-suc-n {a₁} {a₂} {n} bounded c = (m+1+n≰m n n+1≤n)
|
||||
where
|
||||
n+1≤n : n + 1 ≤ n
|
||||
n+1≤n rewrite (+-comm n 1) = bounded c
|
||||
|
||||
Height : ℕ → Set a
|
||||
Height height = (Σ (A × A) (λ (a₁ , a₂) → Chain a₁ a₂ height) × Bounded height)
|
||||
|
|
Loading…
Reference in New Issue
Block a user