Prove that evaluation is monotonic and complete sign analysis
Other than monotonicity of plus and minus, god damn it. Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
8964ba59a1
commit
8a85c4497c
@ -103,8 +103,9 @@ module _ (prog : Program) where
|
||||
open Program prog
|
||||
|
||||
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||
open Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeᵍ vars
|
||||
using (m₁≼m₂⇒m₁[k]≼m₂[k])
|
||||
module VariableSignsFiniteMap = Lattice.FiniteValueMap.WithKeys _≟ˢ_ isLatticeᵍ vars
|
||||
open VariableSignsFiniteMap
|
||||
using ()
|
||||
renaming
|
||||
( FiniteMap to VariableSigns
|
||||
; isLattice to isLatticeᵛ
|
||||
@ -116,6 +117,7 @@ module _ (prog : Program) where
|
||||
; _∈k_ to _∈kᵛ_
|
||||
; _updating_via_ to _updatingᵛ_via_
|
||||
; locate to locateᵛ
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
||||
)
|
||||
open IsLattice isLatticeᵛ
|
||||
using ()
|
||||
@ -145,13 +147,17 @@ module _ (prog : Program) where
|
||||
; _∈k_ to _∈kᵐ_
|
||||
; locate to locateᵐ
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
)
|
||||
open Lattice.FiniteValueMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||||
)
|
||||
|
||||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||||
|
||||
-- build up the 'join' function, which follows from Exercise 4.26's
|
||||
--
|
||||
-- L₁ → (A → L₂)
|
||||
@ -201,6 +207,7 @@ module _ (prog : Program) where
|
||||
eval-Mono : ∀ (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) → Monotonic _≼ᵛ_ _≼ᵍ_ (eval e k∈e⇒k∈vars)
|
||||
eval-Mono (e₁ + e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
|
||||
let
|
||||
-- TODO: can this be done with less boilerplate?
|
||||
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁺₁ k∈e₁)
|
||||
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁺₂ k∈e₂)
|
||||
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
|
||||
@ -214,6 +221,7 @@ module _ (prog : Program) where
|
||||
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ k∈e₂⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂))
|
||||
eval-Mono (e₁ - e₂) k∈e⇒k∈vars {vs₁} {vs₂} vs₁≼vs₂ =
|
||||
let
|
||||
-- TODO: here too -- can this be done with less boilerplate?
|
||||
k∈e₁⇒k∈vars = λ k k∈e₁ → k∈e⇒k∈vars k (in⁻₁ k∈e₁)
|
||||
k∈e₂⇒k∈vars = λ k k∈e₂ → k∈e⇒k∈vars k (in⁻₂ k∈e₂)
|
||||
g₁vs₁ = eval e₁ k∈e₁⇒k∈vars vs₁
|
||||
@ -230,24 +238,49 @@ module _ (prog : Program) where
|
||||
(v₁ , k,v₁∈vs₁) = locateᵛ {k} {vs₁} (vars-in-Map k vs₁ (k∈e⇒k∈vars k here))
|
||||
(v₂ , k,v₂∈vs₂) = locateᵛ {k} {vs₂} (vars-in-Map k vs₂ (k∈e⇒k∈vars k here))
|
||||
in
|
||||
m₁≼m₂⇒m₁[k]≼m₂[k] vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
|
||||
m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ vs₁ vs₂ vs₁≼vs₂ k,v₁∈vs₁ k,v₂∈vs₂
|
||||
eval-Mono (# 0) _ _ = ≈ᵍ-refl
|
||||
eval-Mono (# (suc n')) _ _ = ≈ᵍ-refl
|
||||
|
||||
private module _ (k : String) (e : Expr) (k∈e⇒k∈vars : ∀ k → k ∈ᵉ e → k ∈ˡ vars) where
|
||||
open VariableSignsFiniteMap.GeneralizedUpdate vars isLatticeᵛ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) (λ _ → eval e k∈e⇒k∈vars) (λ _ → eval-Mono e k∈e⇒k∈vars) (k ∷ [])
|
||||
renaming
|
||||
( f' to updateVariablesFromExpression
|
||||
; f'-Monotonic to updateVariablesFromExpression-Mono
|
||||
)
|
||||
public
|
||||
|
||||
updateForState : State → StateVariables → VariableSigns
|
||||
updateForState s sv
|
||||
with code s in p
|
||||
... | k ← e =
|
||||
updateVariablesForState : State → StateVariables → VariableSigns
|
||||
updateVariablesForState s sv
|
||||
-- More weirdness here. Apparently, capturing the with-equality proof
|
||||
-- using 'in p' makes code that reasons about this function (below)
|
||||
-- throw ill-typed with-abstraction errors. Instead, make use of the
|
||||
-- fact that later with-clauses are generalized over earlier ones to
|
||||
-- construct a specialization of vars-complete for (code s).
|
||||
with code s | (λ k → vars-complete {k} s)
|
||||
... | k ← e | k∈codes⇒k∈vars =
|
||||
let
|
||||
(vs , s,vs∈sv) = locateᵐ {s} {sv} (states-in-Map s sv)
|
||||
k∈e⇒k∈codes = λ k k∈e → subst (λ stmt → k ∈ᵗ stmt) (sym p) (in←₂ k∈e)
|
||||
k∈e⇒k∈vars = λ k k∈e → vars-complete s (k∈e⇒k∈codes k k∈e)
|
||||
in
|
||||
vs updatingᵛ (k ∷ []) via (λ _ → eval e k∈e⇒k∈vars vs)
|
||||
updateVariablesFromExpression k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) vs
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ joinAll (λ {a₁} {a₂} a₁≼a₂ → joinAll-Mono {a₁} {a₂} a₁≼a₂) updateForState {!!} states
|
||||
updateVariablesForState-Monoʳ : ∀ (s : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (updateVariablesForState s)
|
||||
updateVariablesForState-Monoʳ s {sv₁} {sv₂} sv₁≼sv₂
|
||||
with code s | (λ k → vars-complete {k} s)
|
||||
... | k ← e | k∈codes⇒k∈vars =
|
||||
let
|
||||
(vs₁ , s,vs₁∈sv₁) = locateᵐ {s} {sv₁} (states-in-Map s sv₁)
|
||||
(vs₂ , s,vs₂∈sv₂) = locateᵐ {s} {sv₂} (states-in-Map s sv₂)
|
||||
vs₁≼vs₂ = m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ sv₁ sv₂ sv₁≼sv₂ s,vs₁∈sv₁ s,vs₂∈sv₂
|
||||
in
|
||||
updateVariablesFromExpression-Mono k e (λ k k∈e → k∈codes⇒k∈vars k (in←₂ k∈e)) {vs₁} {vs₂} vs₁≼vs₂
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ joinAll (λ {a₁} {a₂} a₁≼a₂ → joinAll-Mono {a₁} {a₂} a₁≼a₂) updateVariablesForState updateVariablesForState-Monoʳ states
|
||||
renaming
|
||||
( f' to updateAll
|
||||
; f'-Monotonic to updateAll-Mono
|
||||
)
|
||||
|
||||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ updateAll (λ {m₁} {m₂} m₁≼m₂ → updateAll-Mono {m₁} {m₂} m₁≼m₂)
|
||||
using ()
|
||||
renaming (aᶠ to signs)
|
||||
|
Loading…
Reference in New Issue
Block a user