Add a map from natural numbers for use as a lattice transformer
This commit is contained in:
parent
27eeead350
commit
8b805be9d3
48
NatMap.agda
Normal file
48
NatMap.agda
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
module NatMap where
|
||||||
|
|
||||||
|
open import Agda.Primitive using (Level)
|
||||||
|
open import Data.Nat using (ℕ; _<?_; _≟_)
|
||||||
|
open import Data.Nat.Properties using (<-cmp)
|
||||||
|
open import Data.String using (String; _++_)
|
||||||
|
open import Data.List using (List; []; _∷_)
|
||||||
|
open import Data.Product using (_×_; _,_)
|
||||||
|
open import Relation.Nullary using (yes; no)
|
||||||
|
open import Relation.Binary using (Tri)
|
||||||
|
open import Agda.Builtin.Equality using (_≡_; refl)
|
||||||
|
|
||||||
|
variable
|
||||||
|
a : Level
|
||||||
|
A : Set a
|
||||||
|
|
||||||
|
-- It's easiest to reason about a linear-insertion map.
|
||||||
|
|
||||||
|
NatMap : (A : Set a) → Set a
|
||||||
|
NatMap A = List (ℕ × A)
|
||||||
|
|
||||||
|
insert : ℕ → A → NatMap A -> NatMap A
|
||||||
|
insert n a [] = (n , a) ∷ []
|
||||||
|
insert n a l@(x@(n' , a') ∷ xs) with n <? n'
|
||||||
|
... | yes n≡n' = (n , a) ∷ l
|
||||||
|
... | no n≢n' = x ∷ insert n a xs
|
||||||
|
|
||||||
|
|
||||||
|
testInsert₁ : insert 3 "third" [] ≡ (3 , "third") ∷ []
|
||||||
|
testInsert₁ = refl
|
||||||
|
|
||||||
|
testInsert₂ : insert 4 "fourth" ((3 , "third") ∷ []) ≡ (3 , "third") ∷ (4 , "fourth") ∷ []
|
||||||
|
testInsert₂ = refl
|
||||||
|
|
||||||
|
testInsert₃ : insert 2 "second" ((3 , "third") ∷ (4 , "fourth") ∷ []) ≡ (2 , "second") ∷ (3 , "third") ∷ (4 , "fourth") ∷ []
|
||||||
|
testInsert₃ = refl
|
||||||
|
|
||||||
|
{-# TERMINATING #-}
|
||||||
|
merge : (A -> A -> A) -> NatMap A -> NatMap A -> NatMap A
|
||||||
|
merge _ [] m₂ = m₂
|
||||||
|
merge _ m₁ [] = m₁
|
||||||
|
merge f m₁@(x₁@(n₁ , a₁) ∷ xs₁) m₂@(x₂@(n₂ , a₂) ∷ xs₂) with <-cmp n₁ n₂
|
||||||
|
... | Tri.tri< _ _ _ = x₁ ∷ merge f xs₁ m₂
|
||||||
|
... | Tri.tri> _ _ _ = x₂ ∷ merge f m₁ xs₂
|
||||||
|
... | Tri.tri≈ _ _ _ = (n₁ , f a₁ a₂) ∷ merge f xs₁ xs₂
|
||||||
|
|
||||||
|
testMerge : merge (_++_) ((1 , "one") ∷ (2 , "two") ∷ []) ((2 , "two") ∷ (3 , "three") ∷ []) ≡ (1 , "one") ∷ (2 , "twotwo") ∷ (3 , "three") ∷ []
|
||||||
|
testMerge = refl
|
Loading…
Reference in New Issue
Block a user