Start on proofs of correctness
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
cfa3375de5
commit
8d0d87d2d9
|
@ -7,11 +7,13 @@ module Analysis.Forward
|
||||||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||||
(≈ˡ-dec : IsDecidable _≈ˡ_) where
|
(≈ˡ-dec : IsDecidable _≈ˡ_) where
|
||||||
|
|
||||||
|
open import Data.Empty using (⊥-elim)
|
||||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||||
open import Data.Nat using (suc)
|
open import Data.Nat using (suc)
|
||||||
open import Data.Product using (_×_; proj₁; _,_)
|
open import Data.Product using (_×_; proj₁; _,_)
|
||||||
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
|
open import Data.List using (List; _∷_; []; foldr; cartesianProduct; cartesianProductWith)
|
||||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||||
|
open import Data.List.Relation.Unary.Any as Any using ()
|
||||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
||||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||||
open import Data.Unit using (⊤)
|
open import Data.Unit using (⊤)
|
||||||
|
@ -50,6 +52,7 @@ module WithProg (prog : Program) where
|
||||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵛ≼m₂[k]ᵛ
|
||||||
; ∈k-dec to ∈k-decᵛ
|
; ∈k-dec to ∈k-decᵛ
|
||||||
; all-equal-keys to all-equal-keysᵛ
|
; all-equal-keys to all-equal-keysᵛ
|
||||||
|
; forget to forgetᵛ
|
||||||
)
|
)
|
||||||
public
|
public
|
||||||
open IsLattice isLatticeᵛ
|
open IsLattice isLatticeᵛ
|
||||||
|
@ -131,6 +134,8 @@ module WithProg (prog : Program) where
|
||||||
renaming
|
renaming
|
||||||
( f' to updateVariablesFromExpression
|
( f' to updateVariablesFromExpression
|
||||||
; f'-Monotonic to updateVariablesFromExpression-Mono
|
; f'-Monotonic to updateVariablesFromExpression-Mono
|
||||||
|
; f'-k∈ks-≡ to updateVariablesFromExpression-k∈ks-≡
|
||||||
|
; f'-k∉ks-backward to updateVariablesFromExpression-k∉ks-backward
|
||||||
)
|
)
|
||||||
public
|
public
|
||||||
|
|
||||||
|
@ -196,3 +201,32 @@ module WithProg (prog : Program) where
|
||||||
using ()
|
using ()
|
||||||
renaming (aᶠ to result)
|
renaming (aᶠ to result)
|
||||||
public
|
public
|
||||||
|
|
||||||
|
module WithInterpretation (latticeInterpretationˡ : LatticeInterpretation isLatticeˡ) where
|
||||||
|
open LatticeInterpretation latticeInterpretationˡ
|
||||||
|
using ()
|
||||||
|
renaming (⟦_⟧ to ⟦_⟧ˡ)
|
||||||
|
|
||||||
|
⟦_⟧ᵛ : VariableValues → Env → Set
|
||||||
|
⟦_⟧ᵛ vs ρ = ∀ {k l} → (k , l) ∈ᵛ vs → ∀ {v} → (k , v) Language.∈ ρ → ⟦ l ⟧ˡ v
|
||||||
|
|
||||||
|
InterpretationValid : Set
|
||||||
|
InterpretationValid = ∀ {vs ρ e v} → ρ , e ⇒ᵉ v → ⟦ vs ⟧ᵛ ρ → ⟦ eval e vs ⟧ˡ v
|
||||||
|
|
||||||
|
module WithValidity (interpretationValidˡ : InterpretationValid) where
|
||||||
|
|
||||||
|
updateVariablesFromStmt-matches : ∀ bs vs ρ₁ ρ₂ → ρ₁ , bs ⇒ᵇ ρ₂ → ⟦ vs ⟧ᵛ ρ₁ → ⟦ updateVariablesFromStmt bs vs ⟧ᵛ ρ₂
|
||||||
|
updateVariablesFromStmt-matches _ vs ρ₁ ρ₁ (⇒ᵇ-noop ρ₁) ⟦vs⟧ρ₁ = ⟦vs⟧ρ₁
|
||||||
|
updateVariablesFromStmt-matches _ vs ρ₁ _ (⇒ᵇ-← ρ₁ k e v ρ,e⇒v) ⟦vs⟧ρ₁ {k'} {l} k',l∈vs' {v'} k',v'∈ρ₂
|
||||||
|
with k ≟ˢ k' | k',v'∈ρ₂
|
||||||
|
... | yes refl | here _ v _
|
||||||
|
rewrite updateVariablesFromExpression-k∈ks-≡ k e {l = vs} (Any.here refl) k',l∈vs' =
|
||||||
|
interpretationValidˡ ρ,e⇒v ⟦vs⟧ρ₁
|
||||||
|
... | yes k≡k' | there _ _ _ _ _ k'≢k _ = ⊥-elim (k'≢k (sym k≡k'))
|
||||||
|
... | no k≢k' | here _ _ _ = ⊥-elim (k≢k' refl)
|
||||||
|
... | no k≢k' | there _ _ _ _ _ _ k',v'∈ρ₁ =
|
||||||
|
let
|
||||||
|
k'∉[k] = (λ { (Any.here refl) → k≢k' refl })
|
||||||
|
k',l∈vs = updateVariablesFromExpression-k∉ks-backward k e {l = vs} k'∉[k] k',l∈vs'
|
||||||
|
in
|
||||||
|
⟦vs⟧ρ₁ k',l∈vs k',v'∈ρ₁
|
||||||
|
|
Loading…
Reference in New Issue
Block a user