[WIP] Start lattice and semilattice proofs for Nat
This commit is contained in:
parent
8b805be9d3
commit
97a3f25fd2
109
Lattice.agda
109
Lattice.agda
@ -1,39 +1,114 @@
|
||||
module Lattice where
|
||||
|
||||
open import Relation.Binary.PropositionalEquality
|
||||
import Data.Nat.Properties as NatProps
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
||||
open import Relation.Binary.Definitions
|
||||
open import Data.Nat using (ℕ; _≤_)
|
||||
open import Data.Nat.Properties using (≤-refl; ≤-trans; ≤-antisym)
|
||||
open import Data.Nat as Nat using (ℕ; _≤_)
|
||||
open import Data.Product using (_×_; _,_)
|
||||
open import Agda.Primitive using (lsuc)
|
||||
|
||||
open import NatMap using (NatMap)
|
||||
|
||||
record IsPreorder {a} (A : Set a) (_≼_ : A → A → Set a) : Set a where
|
||||
field
|
||||
≼-refl : Reflexive (_≼_)
|
||||
≼-trans : Transitive (_≼_)
|
||||
≼-antisym : Antisymmetric (_≡_) (_≼_)
|
||||
|
||||
record Preorder {a} (A : Set a) : Set (lsuc a) where
|
||||
field
|
||||
_≼_ : A → A → Set a
|
||||
|
||||
≼-refl : Reflexive (_≼_)
|
||||
≼-trans : Transitive (_≼_)
|
||||
≼-antisym : Antisymmetric (_≡_) (_≼_)
|
||||
isPreorder : IsPreorder A _≼_
|
||||
|
||||
record Semilattice {a} (A : Set a) : Set (lsuc a) where
|
||||
open IsPreorder isPreorder public
|
||||
|
||||
record IsSemilattice {a} (A : Set a) (_≼_ : A → A → Set a) (_⊔_ : A → A → A) : Set a where
|
||||
field
|
||||
_⊔_ : A → A → A
|
||||
isPreorder : IsPreorder A _≼_
|
||||
|
||||
⊔-assoc : (x : A) → (y : A) → (z : A) → x ⊔ (y ⊔ z) ≡ (x ⊔ y) ⊔ z
|
||||
⊔-assoc : (x : A) → (y : A) → (z : A) → (x ⊔ y) ⊔ z ≡ x ⊔ (y ⊔ z)
|
||||
⊔-comm : (x : A) → (y : A) → x ⊔ y ≡ y ⊔ x
|
||||
⊔-idemp : (x : A) → x ⊔ x ≡ x
|
||||
|
||||
record Lattice {a} (A : Set a) : Set (lsuc a) where
|
||||
field
|
||||
joinSemilattice : Semilattice A
|
||||
meetSemilattice : Semilattice A
|
||||
⊔-bound : (x : A) → (y : A) → (z : A) → x ⊔ y ≡ z → (x ≼ z × y ≼ z)
|
||||
⊔-least : (x : A) → (y : A) → (z : A) → x ⊔ y ≡ z →
|
||||
∀ (z' : A) → (x ≼ z' × y ≼ z') → z ≼ z'
|
||||
|
||||
_⊔_ = Semilattice._⊔_ joinSemilattice
|
||||
_⊓_ = Semilattice._⊔_ meetSemilattice
|
||||
open IsPreorder isPreorder public
|
||||
|
||||
record Semilattice {a} (A : Set a) : Set (lsuc a) where
|
||||
field
|
||||
_≼_ : A → A → Set a
|
||||
_⊔_ : A → A → A
|
||||
|
||||
isSemilattice : IsSemilattice A _≼_ _⊔_
|
||||
|
||||
open IsSemilattice isSemilattice public
|
||||
|
||||
record IsLattice {a} (A : Set a) (_≼_ : A → A → Set a) (_⊔_ : A → A → A) (_⊓_ : A → A → A) : Set a where
|
||||
|
||||
_≽_ : A → A → Set a
|
||||
a ≽ b = b ≼ a
|
||||
|
||||
field
|
||||
joinSemilattice : IsSemilattice A _≼_ _⊔_
|
||||
meetSemilattice : IsSemilattice A _≽_ _⊓_
|
||||
|
||||
absorb-⊔-⊓ : (x : A) → (y : A) → x ⊔ (x ⊓ y) ≡ x
|
||||
absorb-⊓-⊔ : (x : A) → (y : A) → x ⊓ (x ⊔ y) ≡ x
|
||||
|
||||
instance
|
||||
open IsSemilattice joinSemilattice public
|
||||
open IsSemilattice meetSemilattice public renaming
|
||||
( ⊔-assoc to ⊓-assoc
|
||||
; ⊔-comm to ⊓-comm
|
||||
; ⊔-idemp to ⊓-idemp
|
||||
; ⊔-bound to ⊓-bound
|
||||
; ⊔-least to ⊓-least
|
||||
)
|
||||
|
||||
|
||||
record Lattice {a} (A : Set a) : Set (lsuc a) where
|
||||
field
|
||||
_≼_ : A → A → Set a
|
||||
_⊔_ : A → A → A
|
||||
_⊓_ : A → A → A
|
||||
|
||||
isLattice : IsLattice A _≼_ _⊔_ _⊓_
|
||||
|
||||
open IsLattice isLattice public
|
||||
|
||||
private module NatInstances where
|
||||
open Nat
|
||||
open NatProps
|
||||
open Eq
|
||||
|
||||
NatPreorder : Preorder ℕ
|
||||
NatPreorder = record { _≼_ = _≤_; ≼-refl = ≤-refl; ≼-trans = ≤-trans; ≼-antisym = ≤-antisym }
|
||||
NatPreorder = record
|
||||
{ _≼_ = _≤_
|
||||
; isPreorder = record
|
||||
{ ≼-refl = ≤-refl
|
||||
; ≼-trans = ≤-trans
|
||||
; ≼-antisym = ≤-antisym
|
||||
}
|
||||
}
|
||||
|
||||
private
|
||||
max-bound₁ : (x : ℕ) → (y : ℕ) → (z : ℕ) → x ⊔ y ≡ z → x ≤ z
|
||||
max-bound₁ x y z x⊔y≡z rewrite sym x⊔y≡z rewrite ⊔-comm x y = m≤n⇒m≤o⊔n y (≤-refl)
|
||||
|
||||
max-bound₂ : (x : ℕ) → (y : ℕ) → (z : ℕ) → x ⊔ y ≡ z → y ≤ z
|
||||
max-bound₂ x y z x⊔y≡z rewrite sym x⊔y≡z = m≤n⇒m≤o⊔n x (≤-refl)
|
||||
|
||||
NatMinSemilattice : Semilattice ℕ
|
||||
NatMinSemilattice = record
|
||||
{ _≼_ = _≤_
|
||||
; _⊔_ = _⊔_
|
||||
; isSemilattice = record
|
||||
{ isPreorder = Preorder.isPreorder NatPreorder
|
||||
; ⊔-assoc = ⊔-assoc
|
||||
; ⊔-comm = ⊔-comm
|
||||
; ⊔-idemp = ⊔-idem
|
||||
; ⊔-bound = λ x y z x⊔y≡z → (max-bound₁ x y z x⊔y≡z , max-bound₂ x y z x⊔y≡z)
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user