Actually force proof of 'analyze-correct'

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2025-01-05 19:35:56 -08:00
parent 105321971f
commit 9f2790c500
2 changed files with 20 additions and 24 deletions

View File

@ -8,6 +8,7 @@ module Analysis.Forward
{{≈ˡ-dec : IsDecidable _≈ˡ_}} where {{≈ˡ-dec : IsDecidable _≈ˡ_}} where
open import Data.Empty using (⊥-elim) open import Data.Empty using (⊥-elim)
open import Data.Unit using ()
open import Data.String using (String) open import Data.String using (String)
open import Data.Product using (_,_) open import Data.Product using (_,_)
open import Data.List using (_∷_; []; foldr; foldl) open import Data.List using (_∷_; []; foldr; foldl)
@ -77,7 +78,7 @@ module WithProg (prog : Program) where
updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv updateAll-k∈ks-≡ {l = sv} (states-complete s) s,vs∈usv
module WithValidInterpretation {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}} module WithValidInterpretation {{latticeInterpretationˡ : LatticeInterpretation isLatticeˡ}}
{{validEvaluator : ValidStmtEvaluator evaluator latticeInterpretationˡ}} where {{validEvaluator : ValidStmtEvaluator evaluator latticeInterpretationˡ}} (dummy : ) where
open ValidStmtEvaluator validEvaluator open ValidStmtEvaluator validEvaluator
eval-fold-valid : {s bss vs ρ₁ ρ₂} ρ₁ , bss ⇒ᵇˢ ρ₂ vs ⟧ᵛ ρ₁ foldl (flip (eval s)) vs bss ⟧ᵛ ρ₂ eval-fold-valid : {s bss vs ρ₁ ρ₂} ρ₁ , bss ⇒ᵇˢ ρ₂ vs ⟧ᵛ ρ₁ foldl (flip (eval s)) vs bss ⟧ᵛ ρ₂

View File

@ -16,6 +16,7 @@ open import Lattice
open import Equivalence open import Equivalence
open import Showable using (Showable; show) open import Showable using (Showable; show)
open import Utils using (_⇒_; _∧_; __) open import Utils using (_⇒_; _∧_; __)
open import Analysis.Utils using (eval-combine₂)
import Analysis.Forward import Analysis.Forward
data Sign : Set where data Sign : Set where
@ -101,6 +102,9 @@ plus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
postulate plus-Monoˡ : (s₂ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ plus s₁ s₂) postulate plus-Monoˡ : (s₂ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ plus s₁ s₂)
postulate plus-Monoʳ : (s₁ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁) postulate plus-Monoʳ : (s₁ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (plus s₁)
plus-Mono₂ : Monotonic₂ _≼ᵍ_ _≼ᵍ_ _≼ᵍ_ plus
plus-Mono₂ = (plus-Monoˡ , plus-Monoʳ)
minus : SignLattice SignLattice SignLattice minus : SignLattice SignLattice SignLattice
minus ⊥ᵍ _ = ⊥ᵍ minus ⊥ᵍ _ = ⊥ᵍ
minus _ ⊥ᵍ = ⊥ᵍ minus _ ⊥ᵍ = ⊥ᵍ
@ -119,6 +123,9 @@ minus [ 0ˢ ]ᵍ [ 0ˢ ]ᵍ = [ 0ˢ ]ᵍ
postulate minus-Monoˡ : (s₂ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ minus s₁ s₂) postulate minus-Monoˡ : (s₂ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (λ s₁ minus s₁ s₂)
postulate minus-Monoʳ : (s₁ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁) postulate minus-Monoʳ : (s₁ : SignLattice) Monotonic _≼ᵍ_ _≼ᵍ_ (minus s₁)
minus-Mono₂ : Monotonic₂ _≼ᵍ_ _≼ᵍ_ _≼ᵍ_ minus
minus-Mono₂ = (minus-Monoˡ , minus-Monoʳ)
⟦_⟧ᵍ : SignLattice Value Set ⟦_⟧ᵍ : SignLattice Value Set
⟦_⟧ᵍ ⊥ᵍ _ = ⟦_⟧ᵍ ⊥ᵍ _ =
⟦_⟧ᵍ ⊤ᵍ _ = ⟦_⟧ᵍ ⊤ᵍ _ =
@ -195,29 +202,13 @@ module WithProg (prog : Program) where
eval-Monoʳ : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e) eval-Monoʳ : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Monoʳ (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ = eval-Monoʳ (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let eval-combine₂ (λ {x} {y} {z} ≼ᵍ-trans {x} {y} {z})
-- TODO: can this be done with less boilerplate? plus plus-Mono₂ {o₁ = eval e₁ vs₁}
g₁vs₁ = eval e₁ vs₁ (eval-Monoʳ e₁ vs₁≼vs₂) (eval-Monoʳ e₂ vs₁≼vs₂)
g₂vs₁ = eval e₂ vs₁
g₁vs₂ = eval e₁ vs₂
g₂vs₂ = eval e₂ vs₂
in
≼ᵍ-trans
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Monoʳ e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Monoʳ e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Monoʳ (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ = eval-Monoʳ (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let eval-combine₂ (λ {x} {y} {z} ≼ᵍ-trans {x} {y} {z})
-- TODO: here too -- can this be done with less boilerplate? minus minus-Mono₂ {o₁ = eval e₁ vs₁}
g₁vs₁ = eval e₁ vs₁ (eval-Monoʳ e₁ vs₁≼vs₂) (eval-Monoʳ e₂ vs₁≼vs₂)
g₂vs₁ = eval e₂ vs₁
g₁vs₂ = eval e₁ vs₂
g₂vs₂ = eval e₂ vs₂
in
≼ᵍ-trans
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Monoʳ e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Monoʳ e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Monoʳ (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂ eval-Monoʳ (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂ with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂
... | yes k∈kvs₁ | yes k∈kvs₂ = ... | yes k∈kvs₁ | yes k∈kvs₂ =
@ -301,4 +292,8 @@ module WithProg (prog : Program) where
eval-valid (⇒ᵉ- ρ 0) _ = refl eval-valid (⇒ᵉ- ρ 0) _ = refl
eval-valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl) eval-valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl)
analyze-correct = Analysis.Forward.WithProg.analyze-correct instance
SignEvalValid : ValidExprEvaluator SignEval latticeInterpretationᵍ
SignEvalValid = record { valid = eval-valid }
analyze-correct = Analysis.Forward.WithProg.analyze-correct SignLattice prog tt