Add a proof about filter's distributivity
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
3d2a507f2f
commit
a081edb881
15
Utils.agda
15
Utils.agda
|
@ -3,15 +3,16 @@ module Utils where
|
|||
open import Agda.Primitive using () renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.Product as Prod using (_×_)
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr) renaming (map to mapˡ)
|
||||
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
|
||||
open import Data.List.Membership.Propositional using (_∈_)
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
|
||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||
open import Data.Sum using (_⊎_)
|
||||
open import Function.Definitions using (Injective)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym; refl; cong)
|
||||
open import Relation.Nullary using (¬_; yes; no)
|
||||
open import Relation.Unary using (Decidable)
|
||||
|
||||
data Unique {c} {C : Set c} : List C → Set c where
|
||||
empty : Unique []
|
||||
|
@ -83,6 +84,14 @@ concat-∈ : ∀ {a} {A : Set a} {x : A} {l : List A} {ls : List (List A)} →
|
|||
concat-∈ x∈l (here refl) = ListMemProp.∈-++⁺ˡ x∈l
|
||||
concat-∈ {ls = l' ∷ ls'} x∈l (there l∈ls') = ListMemProp.∈-++⁺ʳ l' (concat-∈ x∈l l∈ls')
|
||||
|
||||
filter-++ : ∀ {a p} {A : Set a} (l₁ l₂ : List A) {P : A → Set p} (P? : Decidable P) →
|
||||
filter P? (l₁ ++ l₂) ≡ filter P? l₁ ++ filter P? l₂
|
||||
filter-++ [] l₂ P? = refl
|
||||
filter-++ (x ∷ xs) l₂ P?
|
||||
with P? x
|
||||
... | yes _ = cong (x ∷_) (filter-++ xs l₂ P?)
|
||||
... | no _ = (filter-++ xs l₂ P?)
|
||||
|
||||
_⇒_ : ∀ {a p₁ p₂} {A : Set a} (P : A → Set p₁) (Q : A → Set p₂) →
|
||||
Set (a ⊔ℓ p₁ ⊔ℓ p₂)
|
||||
_⇒_ P Q = ∀ a → P a → Q a
|
||||
|
|
Loading…
Reference in New Issue
Block a user