Construct proofs of 'basic' lattices
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -2,7 +2,7 @@ module Equivalence where
|
||||
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Relation.Binary.Definitions
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans)
|
||||
|
||||
module _ {a} (A : Set a) (_≈_ : A → A → Set a) where
|
||||
IsReflexive : Set a
|
||||
@@ -19,3 +19,10 @@ module _ {a} (A : Set a) (_≈_ : A → A → Set a) where
|
||||
≈-refl : IsReflexive
|
||||
≈-sym : IsSymmetric
|
||||
≈-trans : IsTransitive
|
||||
|
||||
isEquivalence-≡ : ∀ {a} {A : Set a} → IsEquivalence A _≡_
|
||||
isEquivalence-≡ = record
|
||||
{ ≈-refl = refl
|
||||
; ≈-sym = sym
|
||||
; ≈-trans = trans
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user