Construct proofs of 'basic' lattices

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2026-02-14 14:40:15 -08:00
parent 27f65c10f7
commit a083f2f4ae
2 changed files with 41 additions and 9 deletions

View File

@@ -2,7 +2,7 @@ module Equivalence where
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans)
module _ {a} (A : Set a) (_≈_ : A A Set a) where
IsReflexive : Set a
@@ -19,3 +19,10 @@ module _ {a} (A : Set a) (_≈_ : A → A → Set a) where
≈-refl : IsReflexive
≈-sym : IsSymmetric
≈-trans : IsTransitive
isEquivalence-≡ : {a} {A : Set a} IsEquivalence A _≡_
isEquivalence-≡ = record
{ ≈-refl = refl
; ≈-sym = sym
; ≈-trans = trans
}