Prove a property of multi-key lookup
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -30,6 +30,7 @@ open import Lattice.Map ≡-dec-A lB as Map
|
||||
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
||||
; ≈-dec to ≈ᵐ-dec
|
||||
; _[_] to _[_]ᵐ
|
||||
; []-∈ to []ᵐ-∈
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
; locate to locateᵐ
|
||||
; keys to keysᵐ
|
||||
@@ -104,6 +105,10 @@ module WithKeys (ks : List A) where
|
||||
_[_] : FiniteMap → List A → List B
|
||||
_[_] (m₁ , _) ks = m₁ [ ks ]ᵐ
|
||||
|
||||
[]-∈ : ∀ {k : A} {v : B} {ks' : List A} (fm : FiniteMap) →
|
||||
k ∈ˡ ks' → (k , v) ∈ fm → v ∈ˡ (fm [ ks' ])
|
||||
[]-∈ {k} {v} {ks'} (m , _) k∈ks' k,v∈fm = []ᵐ-∈ m k,v∈fm k∈ks'
|
||||
|
||||
≈-equiv : IsEquivalence FiniteMap _≈_
|
||||
≈-equiv = record
|
||||
{ ≈-refl =
|
||||
|
||||
Reference in New Issue
Block a user