Prove walk splitting
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -9,6 +9,7 @@ open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; fil
|
||||
open import Data.List.Membership.Propositional using (_∈_)
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
|
||||
open import Data.List.Relation.Unary.All.Properties using (++⁻ˡ)
|
||||
open import Data.List.Relation.Unary.Any as Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||
open import Data.Sum using (_⊎_)
|
||||
open import Function.Definitions using (Injective)
|
||||
@@ -36,6 +37,14 @@ Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
|
||||
help {[]} _ = x'≢x ∷ []
|
||||
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
|
||||
|
||||
Unique-++⁻ˡ : ∀ {c} {C : Set c} (xs : List C) {ys : List C} → Unique (xs ++ ys) → Unique xs
|
||||
Unique-++⁻ˡ [] Unique-ys = empty
|
||||
Unique-++⁻ˡ (x ∷ xs) {ys} (push x≢xs++ys Unique-xs++ys) = push (++⁻ˡ xs {ys = ys} x≢xs++ys) (Unique-++⁻ˡ xs Unique-xs++ys)
|
||||
|
||||
Unique-++⁻ʳ : ∀ {c} {C : Set c} (xs : List C) {ys : List C} → Unique (xs ++ ys) → Unique ys
|
||||
Unique-++⁻ʳ [] Unique-ys = Unique-ys
|
||||
Unique-++⁻ʳ (x ∷ xs) {ys} (push x≢xs++ys Unique-xs++ys) = Unique-++⁻ʳ xs Unique-xs++ys
|
||||
|
||||
All-≢-map : ∀ {c d} {C : Set c} {D : Set d} (x : C) {xs : List C} (f : C → D) →
|
||||
Injective (_≡_ {_} {C}) (_≡_ {_} {D}) f →
|
||||
All (λ x' → ¬ x ≡ x') xs → All (λ y' → ¬ (f x) ≡ y') (mapˡ f xs)
|
||||
|
||||
Reference in New Issue
Block a user