Prove that join is monotonic in both arguments
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
2ddac38c3f
commit
a8d26b1c48
20
Lattice.agda
20
Lattice.agda
|
@ -62,6 +62,26 @@ record IsSemilattice {a} (A : Set a)
|
||||||
(a ⊔ a₁) ⊔ (a ⊔ a₂)
|
(a ⊔ a₁) ⊔ (a ⊔ a₂)
|
||||||
∎
|
∎
|
||||||
|
|
||||||
|
⊔-Monotonicʳ : ∀ (a₂ : A) → Monotonic _≼_ _≼_ (λ a₁ → a₁ ⊔ a₂)
|
||||||
|
⊔-Monotonicʳ a {a₁} {a₂} a₁≼a₂ = ≈-trans (≈-sym lhs) (≈-⊔-cong a₁≼a₂ (≈-refl {a}))
|
||||||
|
where
|
||||||
|
lhs =
|
||||||
|
begin
|
||||||
|
(a₁ ⊔ a₂) ⊔ a
|
||||||
|
∼⟨ ≈-⊔-cong ≈-refl (≈-sym (⊔-idemp _)) ⟩
|
||||||
|
(a₁ ⊔ a₂) ⊔ (a ⊔ a)
|
||||||
|
∼⟨ ≈-sym (⊔-assoc _ _ _) ⟩
|
||||||
|
((a₁ ⊔ a₂) ⊔ a) ⊔ a
|
||||||
|
∼⟨ ≈-⊔-cong (⊔-assoc _ _ _) ≈-refl ⟩
|
||||||
|
(a₁ ⊔ (a₂ ⊔ a)) ⊔ a
|
||||||
|
∼⟨ ≈-⊔-cong (≈-⊔-cong ≈-refl (⊔-comm _ _)) ≈-refl ⟩
|
||||||
|
(a₁ ⊔ (a ⊔ a₂)) ⊔ a
|
||||||
|
∼⟨ ≈-⊔-cong (≈-sym (⊔-assoc _ _ _)) ≈-refl ⟩
|
||||||
|
((a₁ ⊔ a) ⊔ a₂) ⊔ a
|
||||||
|
∼⟨ ⊔-assoc _ _ _ ⟩
|
||||||
|
(a₁ ⊔ a) ⊔ (a₂ ⊔ a)
|
||||||
|
∎
|
||||||
|
|
||||||
≼-refl : ∀ (a : A) → a ≼ a
|
≼-refl : ∀ (a : A) → a ≼ a
|
||||||
≼-refl a = ⊔-idemp a
|
≼-refl a = ⊔-idemp a
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user