Prove the chain mapping property

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-08-20 20:49:08 -07:00
parent 561d0f343a
commit acf4a04814

View File

@ -7,8 +7,9 @@ open import Relation.Nullary using (Dec; ¬_)
open import Data.Nat as Nat using (; _≤_)
open import Data.Product using (_×_; Σ; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Agda.Primitive using (lsuc; Level)
open import Chain using (Chain; Height)
open import Agda.Primitive using (lsuc; Level) renaming (_⊔_ to _⊔_)
open import Chain using (Chain; Height; done; step)
open import Function.Definitions using (Injective)
record IsEquivalence {a} (A : Set a) (_≈_ : A A Set a) : Set a where
field
@ -70,6 +71,24 @@ record IsFiniteHeightLattice {a} (A : Set a)
open IsLattice isLattice public
module _ {a b} {A : Set a} {B : Set b}
(_≈₁_ : A A Set a) (_≈₂_ : B B Set b)
(_⊔₁_ : A A A) (_⊔₂_ : B B B)
(slA : IsSemilattice A _≈₁_ _⊔₁_) (slB : IsSemilattice B _≈₂_ _⊔₂_) where
open IsSemilattice slA renaming (_≼_ to _≼₁_; _≺_ to _≺₁_)
open IsSemilattice slB renaming (_≼_ to _≼₂_; _≺_ to _≺₂_)
Monotonic : (A B) Set (a ⊔ℓ b)
Monotonic f = {a₁ a₂ : A} a₁ ≼₁ a₂ f a₁ ≼₂ f a₂
Chain-map : (f : A B) Monotonic f Injective _≈₁_ _≈₂_ f
{a₁ a₂ : A} {n : } Chain _≺₁_ a₁ a₂ n Chain _≺₂_ (f a₁) (f a₂) n
Chain-map f Monotonicᶠ Injectiveᶠ done = done
Chain-map f Monotonicᶠ Injectiveᶠ (step (a₁≼₁a , a₁̷≈₁a) aa₂) =
let fa₁≺₂fa = (Monotonicᶠ a₁≼₁a , λ fa₁≈₂fa a₁̷≈₁a (Injectiveᶠ fa₁≈₂fa))
in step fa₁≺₂fa (Chain-map f Monotonicᶠ Injectiveᶠ aa₂)
record Semilattice {a} (A : Set a) : Set (lsuc a) where
field
_≈_ : A A Set a