Prove that finite value-maps are finite height

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-03-01 21:03:23 -08:00
parent ca90f6509c
commit ae09a27f64

View File

@ -12,11 +12,12 @@ open import Function.Definitions using (Inverseˡ; Inverseʳ)
module Lattice.FiniteValueMap (A : Set) (B : Set) module Lattice.FiniteValueMap (A : Set) (B : Set)
(_≈₂_ : B B Set) (_≈₂_ : B B Set)
(_⊔₂_ : B B B) (_⊓₂_ : B B B) (_⊔₂_ : B B B) (_⊓₂_ : B B B)
(-dec-A : Decidable (_≡_ {_} {A})) (-dec-A : Decidable (_≡_ {_} {A}))
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where (lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
open import Data.List using (List; length; []; _∷_; map) open import Data.List using (List; length; []; _∷_; map)
open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_) open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ˡ_)
open import Data.Nat using ()
open import Data.Product using (Σ; proj₁; proj₂; _×_) open import Data.Product using (Σ; proj₁; proj₂; _×_)
open import Data.Empty using (⊥-elim) open import Data.Empty using (⊥-elim)
open import Utils using (Unique; push; empty; All¬-¬Any) open import Utils using (Unique; push; empty; All¬-¬Any)
@ -26,14 +27,14 @@ open import Data.List.Relation.Unary.All using (All)
open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Relation.Nullary using (¬_) open import Relation.Nullary using (¬_)
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ -dec-A lB using (subset-impl; locate; forget; _∈_; Map-functional; Expr-Provenance; _∩_; __; `_; in₁; in₂; bothᵘ; single; ⊔-combines) open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ -dec-A lB using (subset-impl; locate; forget; _∈_; Map-functional; Expr-Provenance; _∩_; __; `_; in₁; in₂; bothᵘ; single; ⊔-combines)
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ -dec-A lB public open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ -dec-A lB public
module IterProdIsomorphism where module IterProdIsomorphism where
open import Data.Unit using (; tt) open import Data.Unit using (; tt)
open import Lattice.Unit using () renaming (_≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ; ≈-equiv to ≈ᵘ-equiv) open import Lattice.Unit using () renaming (_≈_ to _≈ᵘ_; _⊔_ to _⊔ᵘ_; _⊓_ to _⊓ᵘ_; ≈-dec to ≈ᵘ-dec; isLattice to isLatticeᵘ; ≈-equiv to ≈ᵘ-equiv; fixedHeight to fixedHeightᵘ)
open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using (IterProd) open import Lattice.IterProd _≈₂_ _≈ᵘ_ _⊔₂_ _⊔ᵘ_ _⊓₂_ _⊓ᵘ_ lB isLatticeᵘ as IP using (IterProd)
open IsLattice lB using () renaming (≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym) open IsLattice lB using () renaming (≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; FixedHeight to FixedHeight₂)
from : {ks : List A} FiniteMap ks IterProd (length ks) from : {ks : List A} FiniteMap ks IterProd (length ks)
from {[]} (([] , _) , _) = tt from {[]} (([] , _) , _) = tt
@ -175,20 +176,20 @@ module IterProdIsomorphism where
from-rest : {k : A} {ks : List A} (fm : FiniteMap (k ks)) proj₂ (from fm) from (pop fm) from-rest : {k : A} {ks : List A} (fm : FiniteMap (k ks)) proj₂ (from fm) from (pop fm)
from-rest (((_ fm') , push _ ufm') , refl) = refl from-rest (((_ fm') , push _ ufm') , refl) = refl
from-preserves-≈ : {ks : List A} (fm₁ fm₂ : FiniteMap ks) fm₁ ≈ᵐ fm₂ (_≈ⁱᵖ_ {ks}) (from fm₁) (from fm₂) from-preserves-≈ : {ks : List A} {fm₁ fm₂ : FiniteMap ks} fm₁ ≈ᵐ fm₂ (_≈ⁱᵖ_ {ks}) (from fm₁) (from fm₂)
from-preserves-≈ {[]} (([] , _) , _) (([] , _) , _) _ = IsEquivalence.≈-refl ≈ᵘ-equiv from-preserves-≈ {[]} {([] , _) , _} {([] , _) , _} _ = IsEquivalence.≈-refl ≈ᵘ-equiv
from-preserves-≈ {k ks'} fm₁@(m₁ , _) fm₂@(m₂ , _) fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁) from-preserves-≈ {k ks'} {fm₁@(m₁ , _)} {fm₂@(m₂ , _)} fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂ with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂
... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl ... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁ with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂)) ... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂))
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂ rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
rewrite from-rest fm₁ rewrite from-rest fm₂ rewrite from-rest fm₁ rewrite from-rest fm₂
= (v₁≈v₁' , from-preserves-≈ (pop fm₁) (pop fm₂) (pop-≈ fm₁ fm₂ fm₁≈fm₂)) = (v₁≈v₁' , from-preserves-≈ {ks'} {pop fm₁} {pop fm₂} (pop-≈ fm₁ fm₂ fm₁≈fm₂))
to-preserves-≈ : {ks : List A} (uks : Unique ks) (ip₁ ip₂ : IterProd (length ks)) _≈ⁱᵖ_ {ks} ip₁ ip₂ to uks ip₁ ≈ᵐ to uks ip₂ to-preserves-≈ : {ks : List A} (uks : Unique ks) {ip₁ ip₂ : IterProd (length ks)} _≈ⁱᵖ_ {ks} ip₁ ip₂ to uks ip₁ ≈ᵐ to uks ip₂
to-preserves-≈ {[]} empty tt tt _ = ((λ k v ()), (λ k v ())) to-preserves-≈ {[]} empty {tt} {tt} _ = ((λ k v ()), (λ k v ()))
to-preserves-≈ {k ks'} uks@(push k≢ks' uks') ip₁@(v₁ , rest₁) ip₂@(v₂ , rest₂) (v₁≈v₂ , rest₁≈rest₂) = (fm₁⊆fm₂ , fm₂⊆fm₁) to-preserves-≈ {k ks'} uks@(push k≢ks' uks') {ip₁@(v₁ , rest₁)} {ip₂@(v₂ , rest₂)} (v₁≈v₂ , rest₁≈rest₂) = (fm₁⊆fm₂ , fm₂⊆fm₁)
where where
fm₁⊆fm₂ : to uks ip₁ ⊆ᵐ to uks ip₂ fm₁⊆fm₂ : to uks ip₁ ⊆ᵐ to uks ip₂
fm₁⊆fm₂ k v k,v∈kvs₁ fm₁⊆fm₂ k v k,v∈kvs₁
@ -196,7 +197,7 @@ module IterProdIsomorphism where
with ((fm'₂ , ufm'₂) , fm'₂≡ks') to uks' rest₂ in p₂ with ((fm'₂ , ufm'₂) , fm'₂≡ks') to uks' rest₂ in p₂
with k,v∈kvs₁ with k,v∈kvs₁
... | here refl = (v₂ , (v₁≈v₂ , here refl)) ... | here refl = (v₂ , (v₁≈v₂ , here refl))
... | there k,v∈fm'₁ with refl p₁ with refl p₂ = let (v' , (v≈v' , k,v'∈kvs₁)) = proj₁ (to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈fm'₁ in (v' , (v≈v' , there k,v'∈kvs₁)) ... | there k,v∈fm'₁ with refl p₁ with refl p₂ = let (v' , (v≈v' , k,v'∈kvs₁)) = proj₁ (to-preserves-≈ uks' {rest₁} {rest₂} rest₁≈rest₂) k v k,v∈fm'₁ in (v' , (v≈v' , there k,v'∈kvs₁))
fm₂⊆fm₁ : to uks ip₂ ⊆ᵐ to uks ip₁ fm₂⊆fm₁ : to uks ip₂ ⊆ᵐ to uks ip₁
fm₂⊆fm₁ k v k,v∈kvs₂ fm₂⊆fm₁ k v k,v∈kvs₂
@ -204,7 +205,7 @@ module IterProdIsomorphism where
with ((fm'₂ , ufm'₂) , fm'₂≡ks') to uks' rest₂ in p₂ with ((fm'₂ , ufm'₂) , fm'₂≡ks') to uks' rest₂ in p₂
with k,v∈kvs₂ with k,v∈kvs₂
... | here refl = (v₁ , (IsLattice.≈-sym lB v₁≈v₂ , here refl)) ... | here refl = (v₁ , (IsLattice.≈-sym lB v₁≈v₂ , here refl))
... | there k,v∈fm'₂ with refl p₁ with refl p₂ = let (v' , (v≈v' , k,v'∈kvs₂)) = proj₂ (to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈fm'₂ in (v' , (v≈v' , there k,v'∈kvs₂)) ... | there k,v∈fm'₂ with refl p₁ with refl p₂ = let (v' , (v≈v' , k,v'∈kvs₂)) = proj₂ (to-preserves-≈ uks' {rest₁} {rest₂} rest₁≈rest₂) k v k,v∈fm'₂ in (v' , (v≈v' , there k,v'∈kvs₂))
from-⊔-distr : {ks : List A} (fm₁ fm₂ : FiniteMap ks) _≈ⁱᵖ_ {ks} (from (fm₁ ⊔ᵐ fm₂)) (_⊔ⁱᵖ_ {ks} (from fm₁) (from fm₂)) from-⊔-distr : {ks : List A} (fm₁ fm₂ : FiniteMap ks) _≈ⁱᵖ_ {ks} (from (fm₁ ⊔ᵐ fm₂)) (_⊔ⁱᵖ_ {ks} (from fm₁) (from fm₂))
from-⊔-distr {[]} fm₁ fm₂ = IsEquivalence.≈-refl ≈ᵘ-equiv from-⊔-distr {[]} fm₁ fm₂ = IsEquivalence.≈-refl ≈ᵘ-equiv
@ -220,7 +221,7 @@ module IterProdIsomorphism where
rewrite Map-functional {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂ rewrite Map-functional {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂
rewrite from-rest (fm₁ ⊔ᵐ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂ rewrite from-rest (fm₁ ⊔ᵐ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂
= ( IsLattice.≈-refl lB = ( IsLattice.≈-refl lB
, IsEquivalence.≈-trans (IP.≈-equiv (length ks)) (from-preserves-≈ (pop (fm₁ ⊔ᵐ fm₂)) (pop fm₁ ⊔ᵐ pop fm₂) (pop-⊔-distr fm₁ fm₂)) ((from-⊔-distr (pop fm₁) (pop fm₂))) , IsEquivalence.≈-trans (IP.≈-equiv (length ks)) (from-preserves-≈ {_} {pop (fm₁ ⊔ᵐ fm₂)} {pop fm₁ ⊔ᵐ pop fm₂} (pop-⊔-distr fm₁ fm₂)) ((from-⊔-distr (pop fm₁) (pop fm₂)))
) )
@ -262,3 +263,12 @@ module IterProdIsomorphism where
in in
(v' , (v₁⊔v₂≈v' , there v'∈fm')) (v' , (v₁⊔v₂≈v' , there v'∈fm'))
module _ {ks : List A} (uks : Unique ks) (≈₂-dec : Decidable _≈₂_) (h₂ : ) (fhB : FixedHeight₂ h₂) where
import Isomorphism
open Isomorphism.TransportFiniteHeight
(IP.isFiniteHeightLattice (length ks) ≈₂-dec ≈ᵘ-dec h₂ 0 fhB fixedHeightᵘ) (isLattice ks)
{f = to uks} {g = from {ks}}
(to-preserves-≈ uks) (from-preserves-≈ {ks})
(to-⊔-distr uks) (from-⊔-distr {ks})
(from-to-inverseʳ uks) (from-to-inverseˡ uks)
using (isFiniteHeightLattice) public