Make 'IsDecidable' into a record to aid instance search
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -65,7 +65,7 @@ module WithProg (prog : Program) where
|
||||
(joinAll-Mono {sv₁} {sv₂} sv₁≼sv₂)
|
||||
|
||||
-- The fixed point of the 'analyze' function is our final goal.
|
||||
open import Fixedpoint ≈ᵐ-dec isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||||
open import Fixedpoint ≈ᵐ-Decidable isFiniteHeightLatticeᵐ analyze (λ {m₁} {m₂} m₁≼m₂ → analyze-Mono {m₁} {m₂} m₁≼m₂)
|
||||
using ()
|
||||
renaming (aᶠ to result; aᶠ≈faᶠ to result≈analyze-result)
|
||||
public
|
||||
|
||||
@@ -5,7 +5,7 @@ module Analysis.Forward.Lattices
|
||||
{L : Set} {h}
|
||||
{_≈ˡ_ : L → L → Set} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(isFiniteHeightLatticeˡ : IsFiniteHeightLattice L h _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(≈ˡ-dec : IsDecidable _≈ˡ_)
|
||||
(≈ˡ-Decidable : IsDecidable _≈ˡ_)
|
||||
(prog : Program) where
|
||||
|
||||
open import Data.String using () renaming (_≟_ to _≟ˢ_)
|
||||
@@ -29,11 +29,14 @@ open Program prog
|
||||
import Lattice.FiniteMap
|
||||
import Chain
|
||||
|
||||
≡-Decidable-String = record { R-dec = _≟ˢ_ }
|
||||
≡-Decidable-State = record { R-dec = _≟_ }
|
||||
|
||||
-- The variable -> abstract value (e.g. sign) map is a finite value-map
|
||||
-- with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||
-- It's helpful to export these via 'public' since consumers tend to
|
||||
-- use various variable lattice operations.
|
||||
module VariableValuesFiniteMap = Lattice.FiniteMap.WithKeys _≟ˢ_ isLatticeˡ vars
|
||||
module VariableValuesFiniteMap = Lattice.FiniteMap.WithKeys ≡-Decidable-String isLatticeˡ vars
|
||||
open VariableValuesFiniteMap
|
||||
using ()
|
||||
renaming
|
||||
@@ -42,7 +45,7 @@ open VariableValuesFiniteMap
|
||||
; _≈_ to _≈ᵛ_
|
||||
; _⊔_ to _⊔ᵛ_
|
||||
; _≼_ to _≼ᵛ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ˡ-dec⇒≈ᵛ-dec
|
||||
; ≈₂-Decidable⇒≈-Decidable to ≈ˡ-Decidable⇒≈ᵛ-Decidable
|
||||
; _∈_ to _∈ᵛ_
|
||||
; _∈k_ to _∈kᵛ_
|
||||
; _updating_via_ to _updatingᵛ_via_
|
||||
@@ -60,13 +63,13 @@ open IsLattice isLatticeᵛ
|
||||
; ⊔-idemp to ⊔ᵛ-idemp
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism _≟ˢ_ isLatticeˡ
|
||||
open Lattice.FiniteMap.IterProdIsomorphism ≡-Decidable-String isLatticeˡ
|
||||
using ()
|
||||
renaming
|
||||
( Provenance-union to Provenance-unionᵐ
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_ isLatticeˡ vars-Unique ≈ˡ-dec _ fixedHeightˡ
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight ≡-Decidable-String isLatticeˡ vars-Unique ≈ˡ-Decidable _ fixedHeightˡ
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵛ
|
||||
@@ -74,13 +77,13 @@ open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟ˢ_
|
||||
)
|
||||
public
|
||||
|
||||
≈ᵛ-dec = ≈ˡ-dec⇒≈ᵛ-dec ≈ˡ-dec
|
||||
≈ᵛ-Decidable = ≈ˡ-Decidable⇒≈ᵛ-Decidable ≈ˡ-Decidable
|
||||
joinSemilatticeᵛ = IsFiniteHeightLattice.joinSemilattice isFiniteHeightLatticeᵛ
|
||||
fixedHeightᵛ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵛ
|
||||
⊥ᵛ = Chain.Height.⊥ fixedHeightᵛ
|
||||
|
||||
-- Finally, the map we care about is (state -> (variables -> value)). Bring that in.
|
||||
module StateVariablesFiniteMap = Lattice.FiniteMap.WithKeys _≟_ isLatticeᵛ states
|
||||
module StateVariablesFiniteMap = Lattice.FiniteMap.WithKeys ≡-Decidable-State isLatticeᵛ states
|
||||
open StateVariablesFiniteMap
|
||||
using (_[_]; []-∈; m₁≼m₂⇒m₁[ks]≼m₂[ks]; m₁≈m₂⇒k∈m₁⇒k∈km₂⇒v₁≈v₂)
|
||||
renaming
|
||||
@@ -91,11 +94,11 @@ open StateVariablesFiniteMap
|
||||
; _∈k_ to _∈kᵐ_
|
||||
; locate to locateᵐ
|
||||
; _≼_ to _≼ᵐ_
|
||||
; ≈₂-dec⇒≈-dec to ≈ᵛ-dec⇒≈ᵐ-dec
|
||||
; ≈₂-Decidable⇒≈-Decidable to ≈ᵛ-Decidable⇒≈ᵐ-Decidable
|
||||
; m₁≼m₂⇒m₁[k]≼m₂[k] to m₁≼m₂⇒m₁[k]ᵐ≼m₂[k]ᵐ
|
||||
)
|
||||
public
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight _≟_ isLatticeᵛ states-Unique ≈ᵛ-dec _ fixedHeightᵛ
|
||||
open Lattice.FiniteMap.IterProdIsomorphism.WithUniqueKeysAndFixedHeight ≡-Decidable-State isLatticeᵛ states-Unique ≈ᵛ-Decidable _ fixedHeightᵛ
|
||||
using ()
|
||||
renaming
|
||||
( isFiniteHeightLattice to isFiniteHeightLatticeᵐ
|
||||
@@ -108,7 +111,7 @@ open IsFiniteHeightLattice isFiniteHeightLatticeᵐ
|
||||
)
|
||||
public
|
||||
|
||||
≈ᵐ-dec = ≈ᵛ-dec⇒≈ᵐ-dec ≈ᵛ-dec
|
||||
≈ᵐ-Decidable = ≈ᵛ-Decidable⇒≈ᵐ-Decidable ≈ᵛ-Decidable
|
||||
fixedHeightᵐ = IsFiniteHeightLattice.fixedHeight isFiniteHeightLatticeᵐ
|
||||
|
||||
-- We now have our (state -> (variables -> value)) map.
|
||||
|
||||
@@ -7,6 +7,7 @@ open import Data.Sum using (inj₁; inj₂)
|
||||
open import Data.Empty using (⊥; ⊥-elim)
|
||||
open import Data.Unit using (⊤; tt)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst)
|
||||
open import Relation.Nullary using (¬_; yes; no)
|
||||
|
||||
@@ -32,7 +33,7 @@ instance
|
||||
}
|
||||
|
||||
-- g for siGn; s is used for strings and i is not very descriptive.
|
||||
_≟ᵍ_ : IsDecidable (_≡_ {_} {Sign})
|
||||
_≟ᵍ_ : Decidable (_≡_ {_} {Sign})
|
||||
_≟ᵍ_ + + = yes refl
|
||||
_≟ᵍ_ + - = no (λ ())
|
||||
_≟ᵍ_ + 0ˢ = no (λ ())
|
||||
@@ -43,12 +44,15 @@ _≟ᵍ_ 0ˢ + = no (λ ())
|
||||
_≟ᵍ_ 0ˢ - = no (λ ())
|
||||
_≟ᵍ_ 0ˢ 0ˢ = yes refl
|
||||
|
||||
≡-Decidable-Sign : IsDecidable {_} {Sign} _≡_
|
||||
≡-Decidable-Sign = record { R-dec = _≟ᵍ_ }
|
||||
|
||||
-- embelish 'sign' with a top and bottom element.
|
||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
|
||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) ≡-Decidable-Sign as AB
|
||||
using ()
|
||||
renaming
|
||||
( AboveBelow to SignLattice
|
||||
; ≈-dec to ≈ᵍ-dec
|
||||
; ≈-Decidable to ≈ᵍ-Decidable
|
||||
; ⊥ to ⊥ᵍ
|
||||
; ⊤ to ⊤ᵍ
|
||||
; [_] to [_]ᵍ
|
||||
@@ -171,9 +175,9 @@ instance
|
||||
module WithProg (prog : Program) where
|
||||
open Program prog
|
||||
|
||||
open import Analysis.Forward.Lattices isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
|
||||
open import Analysis.Forward.Evaluation isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
|
||||
open import Analysis.Forward.Adapters isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
|
||||
open import Analysis.Forward.Lattices isFiniteHeightLatticeᵍ ≈ᵍ-Decidable prog
|
||||
open import Analysis.Forward.Evaluation isFiniteHeightLatticeᵍ ≈ᵍ-Decidable prog
|
||||
open import Analysis.Forward.Adapters isFiniteHeightLatticeᵍ ≈ᵍ-Decidable prog
|
||||
|
||||
eval : ∀ (e : Expr) → VariableValues → SignLattice
|
||||
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
|
||||
@@ -229,7 +233,7 @@ module WithProg (prog : Program) where
|
||||
SignEval = record { eval = eval; eval-Monoʳ = eval-Monoʳ }
|
||||
|
||||
-- For debugging purposes, print out the result.
|
||||
output = show (Analysis.Forward.WithProg.result isFiniteHeightLatticeᵍ ≈ᵍ-dec prog)
|
||||
output = show (Analysis.Forward.WithProg.result isFiniteHeightLatticeᵍ ≈ᵍ-Decidable prog)
|
||||
|
||||
-- This should have fewer cases -- the same number as the actual 'plus' above.
|
||||
-- But agda only simplifies on first argument, apparently, so we are stuck
|
||||
|
||||
Reference in New Issue
Block a user