Make 'IsDecidable' into a record to aid instance search
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
@@ -1,12 +1,11 @@
|
||||
open import Lattice
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||
|
||||
module Lattice.Map {a b : Level} {A : Set a} {B : Set b}
|
||||
{_≈₂_ : B → B → Set b}
|
||||
{_⊔₂_ : B → B → B} {_⊓₂_ : B → B → B}
|
||||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||
(≡-Decidable-A : IsDecidable {a} {A} _≡_)
|
||||
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
@@ -23,6 +22,8 @@ open import Utils using (Unique; push; Unique-append; All¬-¬Any; All-x∈xs)
|
||||
open import Data.String using () renaming (_++_ to _++ˢ_)
|
||||
open import Showable using (Showable; show)
|
||||
|
||||
open IsDecidable ≡-Decidable-A using () renaming (R-dec to ≡-dec-A)
|
||||
|
||||
open IsLattice lB using () renaming
|
||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||||
; ≈-⊔-cong to ≈₂-⊔₂-cong; ≈-⊓-cong to ≈₂-⊓₂-cong
|
||||
@@ -625,7 +626,8 @@ Expr-Provenance-≡ {k} {v} e k,v∈e
|
||||
with (v' , (p , k,v'∈e)) ← Expr-Provenance k e (forget k,v∈e)
|
||||
rewrite Map-functional {m = ⟦ e ⟧} k,v∈e k,v'∈e = p
|
||||
|
||||
module _ (≈₂-dec : IsDecidable _≈₂_) where
|
||||
module _ (≈₂-Decidable : IsDecidable _≈₂_) where
|
||||
open IsDecidable ≈₂-Decidable using () renaming (R-dec to ≈₂-dec)
|
||||
private module _ where
|
||||
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
||||
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
||||
@@ -676,6 +678,9 @@ module _ (≈₂-dec : IsDecidable _≈₂_) where
|
||||
... | _ | no m₂̷⊆m₁ = no (λ (_ , m₂⊆m₁) → m₂̷⊆m₁ m₂⊆m₁)
|
||||
... | no m₁̷⊆m₂ | _ = no (λ (m₁⊆m₂ , _) → m₁̷⊆m₂ m₁⊆m₂)
|
||||
|
||||
≈-Decidable : IsDecidable _≈_
|
||||
≈-Decidable = record { R-dec = ≈-dec }
|
||||
|
||||
private module I⊔ = ImplInsert _⊔₂_
|
||||
private module I⊓ = ImplInsert _⊓₂_
|
||||
|
||||
|
||||
Reference in New Issue
Block a user