Add most of the proof of from distributivity.
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
3ad7db738a
commit
b083561629
|
@ -25,7 +25,7 @@ open import Data.List.Relation.Unary.All using (All)
|
||||||
open import Data.List.Relation.Unary.Any using (Any; here; there)
|
open import Data.List.Relation.Unary.Any using (Any; here; there)
|
||||||
open import Relation.Nullary using (¬_)
|
open import Relation.Nullary using (¬_)
|
||||||
|
|
||||||
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB using (subset-impl; locate; forget; _∈_; Map-functional)
|
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB using (subset-impl; locate; forget; _∈_; Map-functional; Expr-Provenance; _∩_; _∪_; `_; in₁; in₂; bothᵘ; single)
|
||||||
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public
|
open import Lattice.FiniteMap A B _≈₂_ _⊔₂_ _⊓₂_ ≈-dec-A lB public
|
||||||
|
|
||||||
module IterProdIsomorphism where
|
module IterProdIsomorphism where
|
||||||
|
@ -57,12 +57,18 @@ module IterProdIsomorphism where
|
||||||
_≈ᵐ_ : ∀ {ks : List A} → FiniteMap ks → FiniteMap ks → Set
|
_≈ᵐ_ : ∀ {ks : List A} → FiniteMap ks → FiniteMap ks → Set
|
||||||
_≈ᵐ_ {ks} = _≈_ ks
|
_≈ᵐ_ {ks} = _≈_ ks
|
||||||
|
|
||||||
|
_⊔ᵐ_ : ∀ {ks : List A} → FiniteMap ks → FiniteMap ks → FiniteMap ks
|
||||||
|
_⊔ᵐ_ {ks} = _⊔_ ks
|
||||||
|
|
||||||
_⊆ᵐ_ : ∀ {ks₁ ks₂ : List A} → FiniteMap ks₁ → FiniteMap ks₂ → Set
|
_⊆ᵐ_ : ∀ {ks₁ ks₂ : List A} → FiniteMap ks₁ → FiniteMap ks₂ → Set
|
||||||
_⊆ᵐ_ fm₁ fm₂ = subset-impl (proj₁ (proj₁ fm₁)) (proj₁ (proj₁ fm₂))
|
_⊆ᵐ_ fm₁ fm₂ = subset-impl (proj₁ (proj₁ fm₁)) (proj₁ (proj₁ fm₂))
|
||||||
|
|
||||||
_≈ⁱᵖ_ : ∀ {ks : List A} → IterProd (length ks) → IterProd (length ks) → Set
|
_≈ⁱᵖ_ : ∀ {ks : List A} → IterProd (length ks) → IterProd (length ks) → Set
|
||||||
_≈ⁱᵖ_ {ks} = IP._≈_ (length ks)
|
_≈ⁱᵖ_ {ks} = IP._≈_ (length ks)
|
||||||
|
|
||||||
|
_⊔ⁱᵖ_ : ∀ {ks : List A} → IterProd (length ks) → IterProd (length ks) → IterProd (length ks)
|
||||||
|
_⊔ⁱᵖ_ {ks} = IP._⊔_ (length ks)
|
||||||
|
|
||||||
from-to-inverseˡ : ∀ {ks : List A} (uks : Unique ks) →
|
from-to-inverseˡ : ∀ {ks : List A} (uks : Unique ks) →
|
||||||
Inverseˡ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {ks}) (from {ks}) (to {ks} uks) -- from (to x) = x
|
Inverseˡ (_≈ᵐ_ {ks}) (_≈ⁱᵖ_ {ks}) (from {ks}) (to {ks} uks) -- from (to x) = x
|
||||||
from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv 0)
|
from-to-inverseˡ {[]} _ _ = IsEquivalence.≈-refl (IP.≈-equiv 0)
|
||||||
|
@ -102,9 +108,13 @@ module IterProdIsomorphism where
|
||||||
first-key-in-map : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → Σ B (λ v → (k , v) ∈ proj₁ fm)
|
first-key-in-map : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → Σ B (λ v → (k , v) ∈ proj₁ fm)
|
||||||
first-key-in-map (((k , v) ∷ _ , _) , refl) = (v , here refl)
|
first-key-in-map (((k , v) ∷ _ , _) , refl) = (v , here refl)
|
||||||
|
|
||||||
from-first-value : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → proj₁ (from fm) ≈₂ proj₁ (first-key-in-map fm)
|
from-first-value : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → proj₁ (from fm) ≡ proj₁ (first-key-in-map fm)
|
||||||
from-first-value {k} {ks} (((k , v) ∷ _ , push _ _) , refl) = IsLattice.≈-refl lB
|
from-first-value {k} {ks} (((k , v) ∷ _ , push _ _) , refl) = refl
|
||||||
|
|
||||||
|
-- We need pop because reasoning about two distinct 'refl' pattern
|
||||||
|
-- matches is giving us unification errors. So, stash the 'refl' pattern
|
||||||
|
-- matching into a helper functions, and write solutions in terms
|
||||||
|
-- of that.
|
||||||
pop : ∀ {k : A} {ks : List A} → FiniteMap (k ∷ ks) → FiniteMap ks
|
pop : ∀ {k : A} {ks : List A} → FiniteMap (k ∷ ks) → FiniteMap ks
|
||||||
pop (((_ ∷ kvs') , push _ ukvs') , refl) = ((kvs' , ukvs') , refl)
|
pop (((_ ∷ kvs') , push _ ukvs') , refl) = ((kvs' , ukvs') , refl)
|
||||||
|
|
||||||
|
@ -123,6 +133,9 @@ module IterProdIsomorphism where
|
||||||
narrow : ∀ {fm₁ fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ pop fm₂
|
narrow : ∀ {fm₁ fm₂ : FiniteMap (k ∷ ks)} → fm₁ ⊆ᵐ fm₂ → pop fm₁ ⊆ᵐ pop fm₂
|
||||||
narrow {fm₁} {fm₂} x = narrow₂ {pop fm₁} (narrow₁ {fm₂ = fm₂} x)
|
narrow {fm₁} {fm₂} x = narrow₂ {pop fm₁} (narrow₁ {fm₂ = fm₂} x)
|
||||||
|
|
||||||
|
pop-⊔-distr : ∀ {k : A} {ks : List A} (fm₁ fm₂ : FiniteMap (k ∷ ks)) → pop (fm₁ ⊔ᵐ fm₂) ≈ᵐ (pop fm₁ ⊔ᵐ pop fm₂)
|
||||||
|
pop-⊔-distr = {!!} -- pop (fm₁ ⊔ fm₂) ⊆ pop fm₁ ⊔ pop fm₂ etc.
|
||||||
|
|
||||||
from-rest : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → proj₂ (from fm) ≡ from (pop fm)
|
from-rest : ∀ {k : A} {ks : List A} (fm : FiniteMap (k ∷ ks)) → proj₂ (from fm) ≡ from (pop fm)
|
||||||
from-rest (((_ ∷ kvs') , push _ ukvs') , refl) = refl
|
from-rest (((_ ∷ kvs') , push _ ukvs') , refl) = refl
|
||||||
|
|
||||||
|
@ -130,12 +143,12 @@ module IterProdIsomorphism where
|
||||||
from-preserves-≈ {[]} (([] , _) , _) (([] , _) , _) _ = IsEquivalence.≈-refl ≈ᵘ-equiv
|
from-preserves-≈ {[]} (([] , _) , _) (([] , _) , _) _ = IsEquivalence.≈-refl ≈ᵘ-equiv
|
||||||
from-preserves-≈ {k ∷ ks'} fm₁@(m₁ , _) fm₂@(m₂ , _) fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
|
from-preserves-≈ {k ∷ ks'} fm₁@(m₁ , _) fm₂@(m₂ , _) fm₁≈fm₂@(kvs₁⊆kvs₂ , kvs₂⊆kvs₁)
|
||||||
with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂
|
with first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value fm₁ | from-first-value fm₂
|
||||||
... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | fv₁≈v₁ | fv₂≈v₂
|
... | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl
|
||||||
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
|
with kvs₁⊆kvs₂ _ _ k,v₁∈fm₁
|
||||||
... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂))
|
... | (v₁' , (v₁≈v₁' , k,v₁'∈fm₂))
|
||||||
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
|
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₁'∈fm₂
|
||||||
rewrite from-rest fm₁ rewrite from-rest fm₂
|
rewrite from-rest fm₁ rewrite from-rest fm₂
|
||||||
= (≈₂-trans fv₁≈v₁ (≈₂-trans v₁≈v₁' (≈₂-sym fv₂≈v₂)) , from-preserves-≈ (pop fm₁) (pop fm₂) (pop-≈ fm₁ fm₂ fm₁≈fm₂))
|
= (v₁≈v₁' , from-preserves-≈ (pop fm₁) (pop fm₂) (pop-≈ fm₁ fm₂ fm₁≈fm₂))
|
||||||
|
|
||||||
to-preserves-≈ : ∀ {ks : List A} (uks : Unique ks) (ip₁ ip₂ : IterProd (length ks)) → _≈ⁱᵖ_ {ks} ip₁ ip₂ → to uks ip₁ ≈ᵐ to uks ip₂
|
to-preserves-≈ : ∀ {ks : List A} (uks : Unique ks) (ip₁ ip₂ : IterProd (length ks)) → _≈ⁱᵖ_ {ks} ip₁ ip₂ → to uks ip₁ ≈ᵐ to uks ip₂
|
||||||
to-preserves-≈ {[]} empty tt tt _ = ((λ k v ()), (λ k v ()))
|
to-preserves-≈ {[]} empty tt tt _ = ((λ k v ()), (λ k v ()))
|
||||||
|
@ -156,3 +169,20 @@ module IterProdIsomorphism where
|
||||||
with k,v∈kvs₂
|
with k,v∈kvs₂
|
||||||
... | here refl = (v₁ , (IsLattice.≈-sym lB v₁≈v₂ , here refl))
|
... | here refl = (v₁ , (IsLattice.≈-sym lB v₁≈v₂ , here refl))
|
||||||
... | there k,v∈kvs'₂ with refl ← p₁ with refl ← p₂ = let (v' , (v≈v' , k,v'∈kvs₂)) = proj₂ (to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈kvs'₂ in (v' , (v≈v' , there k,v'∈kvs₂))
|
... | there k,v∈kvs'₂ with refl ← p₁ with refl ← p₂ = let (v' , (v≈v' , k,v'∈kvs₂)) = proj₂ (to-preserves-≈ uks' rest₁ rest₂ rest₁≈rest₂) k v k,v∈kvs'₂ in (v' , (v≈v' , there k,v'∈kvs₂))
|
||||||
|
|
||||||
|
from-⊔-distr : ∀ {ks : List A} → (fm₁ fm₂ : FiniteMap ks) → _≈ⁱᵖ_ {ks} (from (fm₁ ⊔ᵐ fm₂)) (_⊔ⁱᵖ_ {ks} (from fm₁) (from fm₂))
|
||||||
|
from-⊔-distr {[]} fm₁ fm₂ = IsEquivalence.≈-refl ≈ᵘ-equiv
|
||||||
|
from-⊔-distr {k ∷ ks} fm₁@(m₁ , _) fm₂@(m₂ , _)
|
||||||
|
with first-key-in-map (fm₁ ⊔ᵐ fm₂) | first-key-in-map fm₁ | first-key-in-map fm₂ | from-first-value (fm₁ ⊔ᵐ fm₂) | from-first-value fm₁ | from-first-value fm₂
|
||||||
|
... | (v , k,v∈fm₁fm₂) | (v₁ , k,v₁∈fm₁) | (v₂ , k,v₂∈fm₂) | refl | refl | refl
|
||||||
|
with Expr-Provenance k ((` m₁) ∪ (` m₂)) (forget {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂)
|
||||||
|
... | (_ , (in₁ _ k∉km₂ , _)) = ⊥-elim (k∉km₂ (forget {m = m₂} k,v₂∈fm₂))
|
||||||
|
... | (_ , (in₂ k∉km₁ _ , _)) = ⊥-elim (k∉km₁ (forget {m = m₁} k,v₁∈fm₁))
|
||||||
|
... | (v₁⊔v₂ , (bothᵘ {v₁'} {v₂'} (single k,v₁'∈m₁) (single k,v₂'∈m₂) , k,v₁⊔v₂∈m₁m₂))
|
||||||
|
rewrite Map-functional {m = m₁} k,v₁∈fm₁ k,v₁'∈m₁
|
||||||
|
rewrite Map-functional {m = m₂} k,v₂∈fm₂ k,v₂'∈m₂
|
||||||
|
rewrite Map-functional {m = proj₁ (fm₁ ⊔ᵐ fm₂)} k,v∈fm₁fm₂ k,v₁⊔v₂∈m₁m₂
|
||||||
|
rewrite from-rest (fm₁ ⊔ᵐ fm₂) rewrite from-rest fm₁ rewrite from-rest fm₂
|
||||||
|
= ( IsLattice.≈-refl lB
|
||||||
|
, IsEquivalence.≈-trans (IP.≈-equiv (length ks)) (from-preserves-≈ (pop (fm₁ ⊔ᵐ fm₂)) (pop fm₁ ⊔ᵐ pop fm₂) (pop-⊔-distr fm₁ fm₂)) ((from-⊔-distr (pop fm₁) (pop fm₂)))
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user