Start working on proofs of Graph-related things
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
844c99336a
commit
b505063771
@ -1,22 +1,23 @@
|
||||
module Language where
|
||||
|
||||
open import Data.Nat using (ℕ; suc; pred)
|
||||
open import Data.Nat using (ℕ; suc; pred; _≤_) renaming (_+_ to _+ⁿ_)
|
||||
open import Data.Nat.Properties using (m≤n⇒m≤n+o; ≤-reflexive)
|
||||
open import Data.Integer using (ℤ; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Data.Vec using (Vec; foldr; lookup; _∷_)
|
||||
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_)
|
||||
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||||
open import Data.Fin using (Fin; suc; zero; fromℕ; inject₁) renaming (_≟_ to _≟ᶠ_)
|
||||
open import Data.Fin using (Fin; suc; zero; fromℕ; inject₁; inject≤; _↑ʳ_) renaming (_≟_ to _≟ᶠ_)
|
||||
open import Data.Fin.Properties using (suc-injective)
|
||||
open import Relation.Binary.PropositionalEquality using (cong; _≡_; refl)
|
||||
open import Relation.Binary.PropositionalEquality using (subst; cong; _≡_; refl)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Function using (_∘_)
|
||||
|
||||
open import Lattice
|
||||
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs)
|
||||
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs; _⊗_; _,_)
|
||||
|
||||
data Expr : Set where
|
||||
_+_ : Expr → Expr → Expr
|
||||
@ -79,6 +80,94 @@ module Semantics where
|
||||
ρ , e ⇒ᵉ (↑ᶻ (+ 0)) →
|
||||
ρ , (while e repeat s) ⇒ˢ ρ
|
||||
|
||||
module Graphs where
|
||||
open Semantics
|
||||
|
||||
record Graph : Set where
|
||||
field
|
||||
size : ℕ
|
||||
|
||||
Index : Set
|
||||
Index = Fin size
|
||||
|
||||
Edge : Set
|
||||
Edge = Index × Index
|
||||
|
||||
field
|
||||
nodes : Vec (List BasicStmt) size
|
||||
edges : List Edge
|
||||
|
||||
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
|
||||
_[_] g idx = lookup (Graph.nodes g) idx
|
||||
|
||||
_⊆_ : Graph → Graph → Set
|
||||
_⊆_ g₁ g₂ =
|
||||
Σ (Graph.size g₁ ≤ Graph.size g₂) (λ n₁≤n₂ →
|
||||
( ∀ (idx : Graph.Index g₁) → g₁ [ idx ] ≡ g₂ [ inject≤ idx n₁≤n₂ ]
|
||||
× ∀ (idx₁ idx₂ : Graph.Index g₁) → (idx₁ , idx₂) ∈ˡ (Graph.edges g₁) →
|
||||
(inject≤ idx₁ n₁≤n₂ , inject≤ idx₂ n₁≤n₂) ∈ˡ (Graph.edges g₂)
|
||||
))
|
||||
|
||||
-- Note: inject≤ doesn't seem to work as nicely with vector lookups.
|
||||
-- The ↑ˡ and ↑ʳ operators are way nicer. Can we reformulate the
|
||||
-- ⊆ property to use them?
|
||||
|
||||
n≤n+m : ∀ (n m : ℕ) → n ≤ n +ⁿ m
|
||||
n≤n+m n m = m≤n⇒m≤n+o m (≤-reflexive (refl {x = n}))
|
||||
|
||||
lookup-++ˡ : ∀ {a} {A : Set a} {n m : ℕ} (xs : Vec A n) (ys : Vec A m)
|
||||
(idx : Fin n) → lookup xs idx ≡ lookup (xs ++ ys) (inject≤ idx (n≤n+m n m))
|
||||
lookup-++ˡ = {!!}
|
||||
|
||||
pushBasicBlock : List BasicStmt → (g₁ : Graph) → Σ Graph (λ g₂ → Graph.Index g₂ × g₁ ⊆ g₂)
|
||||
pushBasicBlock bss g₁ =
|
||||
let
|
||||
size' = Graph.size g₁ +ⁿ 1
|
||||
size≤size' = n≤n+m (Graph.size g₁) 1
|
||||
inject-Edge = λ (idx₁ , idx₂) → (inject≤ idx₁ size≤size' , inject≤ idx₂ size≤size')
|
||||
in
|
||||
( record
|
||||
{ size = size'
|
||||
; nodes = Graph.nodes g₁ ++ (bss ∷ [])
|
||||
; edges = mapˡ inject-Edge (Graph.edges g₁)
|
||||
}
|
||||
, ( (Graph.size g₁) ↑ʳ zero
|
||||
, ( size≤size'
|
||||
, λ idx → lookup-++ˡ (Graph.nodes g₁) (bss ∷ []) idx
|
||||
, λ idx₁ idx₂ e∈es → x∈xs⇒fx∈fxs inject-Edge e∈es
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
record Relaxable (T : Graph → Set) : Set where
|
||||
field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
|
||||
|
||||
instance
|
||||
IndexRelaxable : Relaxable Graph.Index
|
||||
IndexRelaxable = record
|
||||
{ relax = λ g₁⊆g₂ idx → inject≤ idx (proj₁ g₁⊆g₂)
|
||||
}
|
||||
|
||||
EdgeRelaxable : Relaxable Graph.Edge
|
||||
EdgeRelaxable = record
|
||||
{ relax = λ {g₁} {g₂} g₁⊆g₂ (idx₁ , idx₂) →
|
||||
( Relaxable.relax IndexRelaxable {g₁} {g₂} g₁⊆g₂ idx₁
|
||||
, Relaxable.relax IndexRelaxable {g₁} {g₂} g₁⊆g₂ idx₂
|
||||
)
|
||||
}
|
||||
|
||||
ProdRelaxable : ∀ {P : Graph → Set} {Q : Graph → Set} →
|
||||
{{ PRelaxable : Relaxable P }} → {{ QRelaxable : Relaxable Q }} →
|
||||
Relaxable (P ⊗ Q)
|
||||
ProdRelaxable {{pr}} {{qr}} = record
|
||||
{ relax = (λ { g₁⊆g₂ (p , q) →
|
||||
( Relaxable.relax pr g₁⊆g₂ p
|
||||
, Relaxable.relax qr g₁⊆g₂ q) }
|
||||
)
|
||||
}
|
||||
|
||||
open Relaxable {{...}} public
|
||||
|
||||
open import Lattice.MapSet _≟ˢ_
|
||||
renaming
|
||||
( MapSet to StringSet
|
||||
|
@ -68,3 +68,6 @@ data Pairwise {a} {b} {c} {A : Set a} {B : Set b} (P : A → B → Set c) : List
|
||||
_∷_ : ∀ {x : A} {y : B} {xs : List A} {ys : List B} →
|
||||
P x y → Pairwise P xs ys →
|
||||
Pairwise P (x ∷ xs) (y ∷ ys)
|
||||
|
||||
data _⊗_ {a p q} {A : Set a} (P : A → Set p) (Q : A → Set q) : A → Set (a ⊔ℓ p ⊔ℓ q) where
|
||||
_,_ : ∀ {val : A} → P val → Q val → (P ⊗ Q) val
|
||||
|
Loading…
Reference in New Issue
Block a user