Try using index-based comparisons
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
195537fe15
commit
b72ad070ba
101
Language.agda
101
Language.agda
|
@ -6,18 +6,20 @@ open import Data.Integer using (ℤ; +_) renaming (_+_ to _+ᶻ_; _-_ to _-ᶻ_)
|
|||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||
open import Data.Vec using (Vec; foldr; lookup; _∷_; []; _++_; cast)
|
||||
open import Data.Vec.Properties using (++-assoc; ++-identityʳ)
|
||||
open import Data.Vec.Properties using (++-assoc; ++-identityʳ; lookup-++ˡ)
|
||||
open import Data.Vec.Relation.Binary.Equality.Cast using (cast-is-id)
|
||||
open import Data.List using ([]; _∷_; List) renaming (foldr to foldrˡ; map to mapˡ; _++_ to _++ˡ_)
|
||||
open import Data.List.Properties using () renaming (++-assoc to ++ˡ-assoc; map-++ to mapˡ-++ˡ; ++-identityʳ to ++ˡ-identityʳ)
|
||||
open import Data.List.Membership.Propositional as MemProp using () renaming (_∈_ to _∈ˡ_)
|
||||
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||
open import Data.List.Relation.Unary.Any as RelAny using ()
|
||||
open import Data.List.Relation.Unary.Any.Properties using (++⁺ʳ)
|
||||
open import Data.Fin using (Fin; suc; zero; fromℕ; inject₁; inject≤; _↑ʳ_; _↑ˡ_) renaming (_≟_ to _≟ᶠ_)
|
||||
open import Data.Fin.Properties using (suc-injective)
|
||||
open import Relation.Binary.PropositionalEquality using (subst; cong; _≡_; sym; refl)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (subst; cong; _≡_; sym; trans; refl)
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Function using (_∘_)
|
||||
open Eq.≡-Reasoning using (begin_; step-≡; _∎)
|
||||
|
||||
open import Lattice
|
||||
open import Utils using (Unique; Unique-map; empty; push; x∈xs⇒fx∈fxs; _⊗_; _,_)
|
||||
|
@ -101,47 +103,29 @@ module Graphs where
|
|||
nodes : Vec (List BasicStmt) size
|
||||
edges : List Edge
|
||||
|
||||
Graph-build-≡ : ∀ (g₁ g₂ : Graph) (p : Graph.size g₁ ≡ Graph.size g₂) →
|
||||
(cast p (Graph.nodes g₁) ≡ Graph.nodes g₂) →
|
||||
(subst (λ s → List (Fin s × Fin s)) p (Graph.edges g₁) ≡ Graph.edges g₂) →
|
||||
g₁ ≡ g₂
|
||||
Graph-build-≡ g₁ g₂ refl cns₁≡ns₂ refl
|
||||
rewrite cast-is-id refl (Graph.nodes g₁)
|
||||
rewrite cns₁≡ns₂ = refl
|
||||
|
||||
|
||||
↑ˡ-Edge : ∀ {n} → Fin n × Fin n → ∀ m → Fin (n +ⁿ m) × Fin (n +ⁿ m)
|
||||
↑ˡ-Edge : ∀ {n} → (Fin n × Fin n) → ∀ m → (Fin (n +ⁿ m) × Fin (n +ⁿ m))
|
||||
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
|
||||
|
||||
↑ʳ-Edge : ∀ {n} m → Fin n × Fin n → Fin (m +ⁿ n) × Fin (m +ⁿ n)
|
||||
↑ʳ-Edge m (idx₁ , idx₂) = (m ↑ʳ idx₁ , m ↑ʳ idx₂)
|
||||
_[_] : ∀ (g : Graph) → Graph.Index g → List BasicStmt
|
||||
_[_] g idx = lookup (Graph.nodes g) idx
|
||||
|
||||
_∙_ : Graph → Graph → Graph
|
||||
_∙_ (MkGraph s₁ ns₁ es₁) (MkGraph s₂ ns₂ es₂) = MkGraph
|
||||
(s₁ +ⁿ s₂)
|
||||
(ns₁ ++ ns₂)
|
||||
(
|
||||
let
|
||||
edges₁ = mapˡ (λ e → ↑ˡ-Edge e s₂) es₁
|
||||
edges₂ = mapˡ (↑ʳ-Edge s₁) es₂
|
||||
in
|
||||
edges₁ ++ˡ edges₂
|
||||
)
|
||||
|
||||
∙-assoc : ∀ (g₁ g₂ g₃ : Graph) → g₁ ∙ (g₂ ∙ g₃) ≡ (g₁ ∙ g₂) ∙ g₃
|
||||
∙-assoc = {!!}
|
||||
|
||||
∙-zero : ∀ (g : Graph) → g ∙ (MkGraph 0 [] []) ≡ g
|
||||
∙-zero (MkGraph s ns es) = Graph-build-≡ _ _ (+-comm s 0) (++-identityʳ (+-comm s 0) ns) {!!}
|
||||
|
||||
_⊆_ : Graph → Graph → Set
|
||||
_⊆_ g₁ g₂ = Σ Graph (λ g' → g₁ ∙ g' ≡ g₂)
|
||||
|
||||
⊆-refl : ∀ (g : Graph) → g ⊆ g
|
||||
⊆-refl g = (MkGraph 0 [] [] , ∙-zero g)
|
||||
record _⊆_ (g₁ g₂ : Graph) : Set where
|
||||
constructor Mk-⊆
|
||||
field
|
||||
n : ℕ
|
||||
sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ +ⁿ n
|
||||
g₁[]≡g₂[] : ∀ (idx : Graph.Index g₁) →
|
||||
lookup (Graph.nodes g₁) idx ≡
|
||||
lookup (cast sg₂≡sg₁+n (Graph.nodes g₂)) (idx ↑ˡ n)
|
||||
e∈g₁⇒e∈g₂ : ∀ (e : Graph.Edge g₁) →
|
||||
e ∈ˡ (Graph.edges g₁) →
|
||||
(↑ˡ-Edge e n) ∈ˡ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
|
||||
|
||||
⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
|
||||
⊆-trans {g₁} {g₂} {g₃} (g₁₂ , refl) (g₂₃ , refl) = ((g₁₂ ∙ g₂₃) , ∙-assoc g₁ g₁₂ g₂₃)
|
||||
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃} (Mk-⊆ n₁ p₁@refl g₁[]≡g₂[] e∈g₁⇒e∈g₂) (Mk-⊆ n₂ p₂@refl g₂[]≡g₃[] e∈g₂⇒e∈g₃) = record
|
||||
{ n = n₁ +ⁿ n₂
|
||||
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
|
||||
}
|
||||
|
||||
record Relaxable (T : Graph → Set) : Set where
|
||||
field relax : ∀ {g₁ g₂ : Graph} → g₁ ⊆ g₂ → T g₁ → T g₂
|
||||
|
@ -149,7 +133,7 @@ module Graphs where
|
|||
instance
|
||||
IndexRelaxable : Relaxable Graph.Index
|
||||
IndexRelaxable = record
|
||||
{ relax = λ { (g' , refl) idx → idx ↑ˡ (Graph.size g') }
|
||||
{ relax = λ { (Mk-⊆ n refl _ _) idx → idx ↑ˡ n }
|
||||
}
|
||||
|
||||
EdgeRelaxable : Relaxable Graph.Edge
|
||||
|
@ -199,19 +183,36 @@ module Graphs where
|
|||
|
||||
module Construction where
|
||||
pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
|
||||
pushBasicBlock bss g₁ =
|
||||
let
|
||||
g' : Graph
|
||||
g' = record
|
||||
{ size = 1
|
||||
; nodes = bss ∷ []
|
||||
; edges = []
|
||||
}
|
||||
in
|
||||
(g₁ ∙ g' , (Graph.size g₁ ↑ʳ zero , (g' , refl)))
|
||||
pushBasicBlock bss g =
|
||||
( record
|
||||
{ size = Graph.size g +ⁿ 1
|
||||
; nodes = Graph.nodes g ++ (bss ∷ [])
|
||||
; edges = mapˡ (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
|
||||
}
|
||||
, ( Graph.size g ↑ʳ zero
|
||||
, record
|
||||
{ n = 1
|
||||
; sg₂≡sg₁+n = refl
|
||||
; g₁[]≡g₂[] = λ idx → trans (sym (lookup-++ˡ (Graph.nodes g) (bss ∷ []) idx)) (sym (cong (λ vec → lookup vec (idx ↑ˡ 1)) (cast-is-id refl (Graph.nodes g ++ (bss ∷ [])))))
|
||||
; e∈g₁⇒e∈g₂ = λ e e∈g₁ → x∈xs⇒fx∈fxs (λ e' → ↑ˡ-Edge e' 1) e∈g₁
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
|
||||
addEdges g es = {!!}
|
||||
addEdges g es =
|
||||
( record
|
||||
{ size = Graph.size g
|
||||
; nodes = Graph.nodes g
|
||||
; edges = es ++ˡ Graph.edges g
|
||||
}
|
||||
, record
|
||||
{ n = 0
|
||||
; sg₂≡sg₁+n = +-comm 0 (Graph.size g)
|
||||
; g₁[]≡g₂[] = {!!}
|
||||
; e∈g₁⇒e∈g₂ = {!!}
|
||||
}
|
||||
)
|
||||
|
||||
pushEmptyBlock : MonotonicGraphFunction Graph.Index
|
||||
pushEmptyBlock = pushBasicBlock []
|
||||
|
|
Loading…
Reference in New Issue
Block a user