Add proof of Lattice preservation
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
7b24bae29a
commit
bf74b35c14
@ -96,5 +96,54 @@ record LatticeHomomorphism (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
||||
⊔-homomorphism : SemilatticeHomomorphism _⊔₁_ _⊔₂_
|
||||
⊓-homomorphism : SemilatticeHomomorphism _⊓₁_ _⊓₂_
|
||||
|
||||
open SemilatticeHomomorphism ⊔-homomorphism using (f-preserves-≈)
|
||||
open SemilatticeHomomorphism ⊓-homomorphism renaming (f-⊔-distr to f-⊓-distr)
|
||||
open SemilatticeHomomorphism ⊔-homomorphism using (f-⊔-distr; f-preserves-≈) public
|
||||
open SemilatticeHomomorphism ⊓-homomorphism using () renaming (f-⊔-distr to f-⊓-distr) public
|
||||
|
||||
module _ (_⊔₁_ : A → A → A) (_⊔₂_ : B → B → B)
|
||||
(_⊓₁_ : A → A → A) (_⊓₂_ : B → B → B)
|
||||
(lh : LatticeHomomorphism _⊔₁_ _⊔₂_ _⊓₁_ _⊓₂_)
|
||||
(≈₂-⊔₂-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≈₂ a₂ → a₃ ≈₂ a₄ → (a₁ ⊔₂ a₃) ≈₂ (a₂ ⊔₂ a₄))
|
||||
(≈₂-⊓₂-cong : ∀ {a₁ a₂ a₃ a₄} → a₁ ≈₂ a₂ → a₃ ≈₂ a₄ → (a₁ ⊓₂ a₃) ≈₂ (a₂ ⊓₂ a₄))
|
||||
(surF : Surjective _≈₁_ _≈₂_ f) where
|
||||
|
||||
open LatticeHomomorphism lh
|
||||
|
||||
transportLattice : IsLattice A _≈₁_ _⊔₁_ _⊓₁_ → IsLattice B _≈₂_ _⊔₂_ _⊓₂_
|
||||
transportLattice lA = record
|
||||
{ joinSemilattice = transportSemilattice _⊔₁_ _⊔₂_ (LatticeHomomorphism.⊔-homomorphism lh) ≈₂-⊔₂-cong surF (IsLattice.joinSemilattice lA)
|
||||
; meetSemilattice = transportSemilattice _⊓₁_ _⊓₂_ (LatticeHomomorphism.⊓-homomorphism lh) ≈₂-⊓₂-cong surF (IsLattice.meetSemilattice lA)
|
||||
; absorb-⊔-⊓ = λ b₁ b₂ →
|
||||
let (a₁ , fa₁≈b₁) = surF b₁
|
||||
(a₂ , fa₂≈b₂) = surF b₂
|
||||
in
|
||||
begin
|
||||
b₁ ⊔₂ (b₁ ⊓₂ b₂)
|
||||
∼⟨ ≈₂-⊔₂-cong (≈₂-sym fa₁≈b₁) (≈₂-⊓₂-cong (≈₂-sym fa₁≈b₁) (≈₂-sym fa₂≈b₂)) ⟩
|
||||
f a₁ ⊔₂ (f a₁ ⊓₂ f a₂)
|
||||
∼⟨ ≈₂-⊔₂-cong ≈₂-refl (≈₂-sym (f-⊓-distr a₁ a₂)) ⟩
|
||||
f a₁ ⊔₂ f (a₁ ⊓₁ a₂)
|
||||
∼⟨ ≈₂-sym (f-⊔-distr a₁ (a₁ ⊓₁ a₂)) ⟩
|
||||
f (a₁ ⊔₁ (a₁ ⊓₁ a₂))
|
||||
∼⟨ f-preserves-≈ (IsLattice.absorb-⊔-⊓ lA a₁ a₂) ⟩
|
||||
f a₁
|
||||
∼⟨ fa₁≈b₁ ⟩
|
||||
b₁
|
||||
∎
|
||||
; absorb-⊓-⊔ = λ b₁ b₂ →
|
||||
let (a₁ , fa₁≈b₁) = surF b₁
|
||||
(a₂ , fa₂≈b₂) = surF b₂
|
||||
in
|
||||
begin
|
||||
b₁ ⊓₂ (b₁ ⊔₂ b₂)
|
||||
∼⟨ ≈₂-⊓₂-cong (≈₂-sym fa₁≈b₁) (≈₂-⊔₂-cong (≈₂-sym fa₁≈b₁) (≈₂-sym fa₂≈b₂)) ⟩
|
||||
f a₁ ⊓₂ (f a₁ ⊔₂ f a₂)
|
||||
∼⟨ ≈₂-⊓₂-cong ≈₂-refl (≈₂-sym (f-⊔-distr a₁ a₂)) ⟩
|
||||
f a₁ ⊓₂ f (a₁ ⊔₁ a₂)
|
||||
∼⟨ ≈₂-sym (f-⊓-distr a₁ (a₁ ⊔₁ a₂)) ⟩
|
||||
f (a₁ ⊓₁ (a₁ ⊔₁ a₂))
|
||||
∼⟨ f-preserves-≈ (IsLattice.absorb-⊓-⊔ lA a₁ a₂) ⟩
|
||||
f a₁
|
||||
∼⟨ fa₁≈b₁ ⟩
|
||||
b₁
|
||||
∎
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user