Use different graph operations to implement construction

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-04-25 23:10:41 -07:00
parent b134c143ca
commit c00c8e3e85
4 changed files with 239 additions and 197 deletions

View File

@ -52,20 +52,17 @@ record Program : Set where
field field
rootStmt : Stmt rootStmt : Stmt
private
buildResult = buildCfg rootStmt empty
graph : Graph graph : Graph
graph = proj₁ buildResult graph = buildCfg rootStmt
State : Set State : Set
State = Graph.Index graph State = Graph.Index graph
initialState : State initialState : State
initialState = Utils.proj₁ (proj₁ (proj₂ buildResult)) initialState = proj₁ (buildCfg-input rootStmt)
finalState : State finalState : State
finalState = Utils.proj₂ (proj₁ (proj₂ buildResult)) finalState = proj₁ (buildCfg-output rootStmt)
private private
vars-Set : StringSet vars-Set : StringSet

View File

@ -1,8 +1,8 @@
module Language.Graphs where module Language.Graphs where
open import Language.Base open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_)
open import Data.Fin as Fin using (Fin; suc; zero; _↑ˡ_; _↑ʳ_) open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective) open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_) open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using () open import Data.List.Membership.Propositional as ListMem using ()
@ -15,7 +15,7 @@ open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-s
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
open import Lattice open import Lattice
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_) open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_; ∈-cartesianProduct)
record Graph : Set where record Graph : Set where
constructor MkGraph constructor MkGraph
@ -31,157 +31,218 @@ record Graph : Set where
field field
nodes : Vec (List BasicStmt) size nodes : Vec (List BasicStmt) size
edges : List Edge edges : List Edge
inputs : List Index
outputs : List Index
empty : Graph _↑ˡ_ : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
empty = record _↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m)
{ size = 0
; nodes = [] _↑ʳ_ : {m} n (Fin m × Fin m) Fin (n Nat.+ m) × Fin (n Nat.+ m)
; edges = [] _↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂)
_↑ˡⁱ_ : {n} List (Fin n) m List (Fin (n Nat.+ m))
_↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l
_↑ʳⁱ_ : {m} n List (Fin m) List (Fin (n Nat.+ m))
_↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l
_↑ˡᵉ_ : {n} List (Fin n × Fin n) m List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡᵉ_ l m = List.map (_↑ˡ m) l
_↑ʳᵉ_ : {m} n List (Fin m × Fin m) List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ʳᵉ_ n l = List.map (n ↑ʳ_) l
infixl 5 _∙_
_∙_ : Graph Graph Graph
_∙_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)
; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.outputs g₂)
} }
↑ˡ-Edge : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m)) infixl 5 _↦_
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m) _↦_ : Graph Graph Graph
_↦_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂
}
loop : Graph Graph
loop g = record
{ size = Graph.size g
; nodes = Graph.nodes g
; edges = Graph.edges g List.++
List.cartesianProduct (Graph.outputs g) (Graph.inputs g)
; inputs = Graph.inputs g
; outputs = Graph.outputs g
}
_[_] : (g : Graph) Graph.Index g List BasicStmt _[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx _[_] g idx = lookup (Graph.nodes g) idx
record _⊆_ (g₁ g₂ : Graph) : Set where singleton : List BasicStmt Graph
constructor Mk-⊆ singleton bss = record
field { size = 1
n : ; nodes = bss []
sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ Nat.+ n ; edges = []
newNodes : Vec (List BasicStmt) n ; inputs = zero []
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) Graph.nodes g₁ ++ newNodes ; outputs = zero []
e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁} }
e ListMem.∈ (Graph.edges g₁)
(↑ˡ-Edge e n) ListMem.∈ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
private buildCfg : Stmt Graph
castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m) buildCfg bs₁ = singleton (bs₁ [])
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂) buildCfg (s₁ then s₂) = buildCfg s₁ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = singleton [] (buildCfg s₁ buildCfg s₂) singleton []
buildCfg (while _ repeat s) = loop (buildCfg s singleton [])
↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂) -- record _⊆_ (g₁ g₂ : Graph) : Set where
f ↑ˡ n₁ ↑ˡ n₂ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂)) -- constructor Mk-⊆
↑ˡ-assoc zero p = refl -- field
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl -- n :
-- sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ Nat.+ n
↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂) -- newNodes : Vec (List BasicStmt) n
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂)) -- nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
↑ˡ-Edge-assoc (idx₁ , idx₂) p -- e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
rewrite ↑ˡ-assoc idx₁ p -- e ListMem.∈ (Graph.edges g₁) →
rewrite ↑ˡ-assoc idx₂ p = refl -- (↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
--
↑ˡ-identityʳ : {s} (f : Fin s) (p : s Nat.+ 0 s) -- private
f Fin.cast p (f ↑ˡ 0) -- castᵉ : ∀ {n m : } .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
↑ˡ-identityʳ zero p = refl -- castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl --
-- ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s Nat.+ 0 s) -- f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
e castᵉ p (↑ˡ-Edge e 0) -- ↑ˡ-assoc zero p = refl
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p -- ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
rewrite sym (↑ˡ-identityʳ idx₁ p) --
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl -- ↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
-- ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
cast∈⇒∈subst : {n m : } (p : n m) (q : m n) -- ↑ˡ-Edge-assoc (idx₁ , idx₂) p
(e : Fin n × Fin n) (es : List (Fin m × Fin m)) -- rewrite ↑ˡ-assoc idx₁ p
castᵉ p e ListMem.∈ es -- rewrite ↑ˡ-assoc idx₂ p = refl
e ListMem.∈ subst (λ m List (Fin m × Fin m)) q es --
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es -- ↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
rewrite FinProp.cast-is-id refl idx₁ -- f ≡ Fin.cast p (f ↑ˡ 0)
rewrite FinProp.cast-is-id refl idx₂ = e∈es -- ↑ˡ-identityʳ zero p = refl
-- ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃ --
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃} -- ↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂) -- e ≡ castᵉ p (↑ˡ-Edge e 0)
(Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃) -- ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite cast-is-id refl ns₂ -- rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite cast-is-id refl ns₃ -- rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
with refl nsg₂≡nsg₁++newNodes₁ --
with refl nsg₃≡nsg₂++newNodes₂ = -- cast∈⇒∈subst : ∀ {n m : } (p : n ≡ m) (q : m ≡ n)
record -- (e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
{ n = n₁ Nat.+ n₂ -- castᵉ p e ListMem.∈ es →
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂ -- e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
; newNodes = newNodes₁ ++ newNodes₂ -- cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂ -- rewrite FinProp.cast-is-id refl idx₁
; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ -- rewrite FinProp.cast-is-id refl idx₂ = e∈es
cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _ --
(subst (λ e' e' ListMem.∈ es₃) -- ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
(↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂))) -- ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁))) -- (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
} -- (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
-- rewrite cast-is-id refl ns₂
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction) -- rewrite cast-is-id refl ns₃
-- with refl ← nsg₂≡nsg₁++newNodes₁
instance -- with refl ← nsg₃≡nsg₂++newNodes₂ =
IndexRelaxable : Relaxable Graph.Index -- record
IndexRelaxable = record -- { n = n₁ Nat.+ n₂
{ relax = λ { (Mk-⊆ n refl _ _ _) idx idx ↑ˡ n } -- ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
} -- ; newNodes = newNodes₁ ++ newNodes₂
-- ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
EdgeRelaxable : Relaxable Graph.Edge -- ; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ →
EdgeRelaxable = record -- cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
{ relax = λ g₁⊆g₂ (idx₁ , idx₂) -- (subst (λ e' → e' ListMem.∈ es₃)
( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁ -- (↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
, Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂ -- (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
) -- }
} --
-- open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
open Relaxable {{...}} --
-- instance
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index -- IndexRelaxable : Relaxable Graph.Index
pushBasicBlock bss g = -- IndexRelaxable = record
( record -- { relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n }
{ size = Graph.size g Nat.+ 1 -- }
; nodes = Graph.nodes g ++ (bss []) --
; edges = List.map (λ e ↑ˡ-Edge e 1) (Graph.edges g) -- EdgeRelaxable : Relaxable Graph.Edge
} -- EdgeRelaxable = record
, ( Graph.size g ↑ʳ zero -- { relax = λ g₁⊆g₂ (idx₁ , idx₂) →
, record -- ( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
{ n = 1 -- , Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
; sg₂≡sg₁+n = refl -- )
; newNodes = (bss []) -- }
; nsg₂≡nsg₁++newNodes = cast-is-id refl _ --
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁ -- open Relaxable {{...}}
} --
) -- pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
) -- pushBasicBlock bss g =
-- ( record
pushEmptyBlock : MonotonicGraphFunction Graph.Index -- { size = Graph.size g Nat.+ 1
pushEmptyBlock = pushBasicBlock [] -- ; nodes = Graph.nodes g ++ (bss ∷ [])
-- ; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g') -- }
addEdges (MkGraph s ns es) es' = -- , ( Graph.size g ↑ʳ zero
( record -- , record
{ size = s -- { n = 1
; nodes = ns -- ; sg₂≡sg₁+n = refl
; edges = es' List.++ es -- ; newNodes = (bss ∷ [])
} -- ; nsg₂≡nsg₁++newNodes = cast-is-id refl _
, record -- ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
{ n = 0 -- }
; sg₂≡sg₁+n = +-comm 0 s -- )
; newNodes = [] -- )
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns) --
; e∈g₁⇒e∈g₂ = λ {e} e∈es -- pushEmptyBlock : MonotonicGraphFunction Graph.Index
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _ -- pushEmptyBlock = pushBasicBlock []
(subst (λ e' e' ListMem.∈ _) --
(↑ˡ-Edge-identityʳ e (+-comm s 0)) -- addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
(ListMemProp.∈-++⁺ʳ es' e∈es)) -- addEdges (MkGraph s ns es) es' =
} -- ( record
) -- { size = s
-- ; nodes = ns
buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index) -- ; edges = es' List.++ es
buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx)) -- }
buildCfg (s₁ then s₂) = -- , record
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂) -- { n = 0
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) addEdges g ((idx₂ , idx₃) []) }) -- ; sg₂≡sg₁+n = +-comm 0 s
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) (idx₁ , idx₄) }) -- ; newNodes = []
buildCfg (if _ then s₁ else s₂) = -- ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock) -- ; e∈g₁⇒e∈g₂ = λ {e} e∈es →
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') -- cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
addEdges g ((idx , idx₁) (idx , idx₃) (idx₂ , idx') (idx₄ , idx') []) }) -- (subst (λ e' → e' ListMem.∈ _)
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') (idx , idx') }) -- (↑ˡ-Edge-identityʳ e (+-comm s 0))
buildCfg (while _ repeat s) = -- (ListMemProp.∈-++⁺ʳ es' e∈es))
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock) -- }
update (λ { g ((idx₁ , idx₂) , idx , idx') -- )
addEdges g ((idx , idx') (idx , idx₁) (idx₂ , idx) []) }) --
map (λ { g ((idx₁ , idx₂) , idx , idx') (idx , idx') }) -- buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
-- buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
-- buildCfg (s₁ then s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
-- buildCfg (if _ then s₁ else s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
-- addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
-- buildCfg (while _ repeat s) =
-- (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , idx , idx') →
-- addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })

View File

@ -5,48 +5,24 @@ open import Language.Semantics
open import Language.Graphs open import Language.Graphs
open import Language.Traces open import Language.Traces
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction) open import Data.Fin as Fin using (zero)
open import Utils using (_⊗_; _,_) open import Data.List using (_∷_; [])
open Relaxable {{...}} open import Data.Product using (Σ; _,_)
open import Data.Fin using (zero) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
open import Data.List using (List; _∷_; [])
open import Data.Vec using (_∷_; [])
open import Data.Vec.Properties using (cast-is-id; lookup-++ˡ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; subst)
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁) buildCfg-input : (s : Stmt) let g = buildCfg s in Σ (Graph.Index g) (λ idx Graph.inputs g idx [])
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ] buildCfg-input bs₁ = (zero , refl)
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx buildCfg-input (s₁ then s₂)
rewrite cast-is-id refl (Graph.nodes g₂) with (idx , p) buildCfg-input s₁ rewrite p = (_ , refl)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _) buildCfg-input (if _ then s₁ else s₂) = (zero , refl)
buildCfg-input (while _ repeat s)
with (idx , p) buildCfg-input s rewrite p = (_ , refl)
instance buildCfg-output : (s : Stmt) let g = buildCfg s in Σ (Graph.Index g) (λ idx Graph.outputs g idx [])
NodeEqualsMonotonic : {bss : List BasicStmt} buildCfg-output bs₁ = (zero , refl)
MonotonicPredicate (λ g n g [ n ] bss) buildCfg-output (s₁ then s₂)
NodeEqualsMonotonic = record with (idx , p) buildCfg-output s₂ rewrite p = (_ , refl)
{ relaxPredicate = λ g₁ g₂ idx g₁⊆g₂ g₁[idx]≡bss buildCfg-output (if _ then s₁ else s₂) = (_ , refl)
trans (sym (relax-preserves-[]≡ g₁ g₂ g₁⊆g₂ idx)) g₁[idx]≡bss buildCfg-output (while _ repeat s)
} with (idx , p) buildCfg-output s rewrite p = (_ , refl)
pushBasicBlock-works : (bss : List BasicStmt) Always (λ g idx g [ idx ] bss) (pushBasicBlock bss)
pushBasicBlock-works bss = MkAlways (λ g lookup-++ʳ (Graph.nodes g) (bss []) zero)
TransformsEnv : (ρ₁ ρ₂ : Env) DependentPredicate (Graph.Index Graph.Index)
TransformsEnv ρ₁ ρ₂ g (idx₁ , idx₂) = Trace {g} idx₁ idx₂ ρ₁ ρ₂
instance
TransformsEnvMonotonic : {ρ₁ ρ₂ : Env} MonotonicPredicate (TransformsEnv ρ₁ ρ₂)
TransformsEnvMonotonic = {!!}
buildCfg-sufficient : {ρ₁ ρ₂ : Env} {s : Stmt} ρ₁ , s ⇒ˢ ρ₂ Always (TransformsEnv ρ₁ ρ₂) (buildCfg s)
buildCfg-sufficient {ρ₁} {ρ₂} { bs } (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ) =
pushBasicBlock-works (bs [])
map-reason
(λ g idx g[idx]≡[bs] Trace-single (subst (ρ₁ ,_⇒ᵇˢ ρ₂)
(sym g[idx]≡[bs])
(ρ₁,bs⇒ρ [])))
buildCfg-sufficient {ρ₁} {ρ₂} {s₁ then s₂} (⇒ˢ-then ρ₁ ρ ρ₂ s₁ s₂ ρ₁,s₁⇒ρ ρ₂,s₂⇒ρ) =
(buildCfg-sufficient ρ₁,s₁⇒ρ ⟨⊗⟩-reason buildCfg-sufficient ρ₂,s₂⇒ρ)
update-reason {!!}
map-reason {!!}

View File

@ -1,9 +1,11 @@
module Utils where module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_) open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using ()
open import Data.Nat using (; suc) open import Data.Nat using (; suc)
open import Data.List using (List; []; _∷_; _++_) renaming (map to mapˡ) open import Data.List using (List; cartesianProduct; []; _∷_; _++_) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map) open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Function.Definitions using (Injective) open import Function.Definitions using (Injective)
@ -78,3 +80,9 @@ proj₁ (v , _) = v
proj₂ : {a p q} {A : Set a} {P : A Set p} {Q : A Set q} {a : A} (P Q) a Q a proj₂ : {a p q} {A : Set a} {P : A Set p} {Q : A Set q} {a : A} (P Q) a Q a
proj₂ (_ , v) = v proj₂ (_ , v) = v
∈-cartesianProduct : {a b} {A : Set a} {B : Set b}
{x : A} {xs : List A} {y : B} {ys : List B}
x xs y ys (x Prod., y) cartesianProduct xs ys
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
∈-cartesianProduct {x = x} {xs = x' _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)