Use different graph operations to implement construction

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-04-25 23:10:41 -07:00
parent b134c143ca
commit c00c8e3e85
4 changed files with 239 additions and 197 deletions

View File

@ -52,20 +52,17 @@ record Program : Set where
field
rootStmt : Stmt
private
buildResult = buildCfg rootStmt empty
graph : Graph
graph = proj₁ buildResult
graph = buildCfg rootStmt
State : Set
State = Graph.Index graph
initialState : State
initialState = Utils.proj₁ (proj₁ (proj₂ buildResult))
initialState = proj₁ (buildCfg-input rootStmt)
finalState : State
finalState = Utils.proj₂ (proj₁ (proj₂ buildResult))
finalState = proj₁ (buildCfg-output rootStmt)
private
vars-Set : StringSet

View File

@ -1,8 +1,8 @@
module Language.Graphs where
open import Language.Base
open import Language.Base using (Expr; Stmt; BasicStmt; ⟨_⟩; _then_; if_then_else_; while_repeat_)
open import Data.Fin as Fin using (Fin; suc; zero; _↑ˡ_; _↑ʳ_)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties as FinProp using (suc-injective)
open import Data.List as List using (List; []; _∷_)
open import Data.List.Membership.Propositional as ListMem using ()
@ -15,7 +15,7 @@ open import Data.Vec.Properties using (cast-is-id; ++-assoc; lookup-++ˡ; cast-s
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; sym; refl; subst; trans)
open import Lattice
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_)
open import Utils using (x∈xs⇒fx∈fxs; _⊗_; _,_; ∈-cartesianProduct)
record Graph : Set where
constructor MkGraph
@ -31,157 +31,218 @@ record Graph : Set where
field
nodes : Vec (List BasicStmt) size
edges : List Edge
inputs : List Index
outputs : List Index
empty : Graph
empty = record
{ size = 0
; nodes = []
; edges = []
_↑ˡ_ : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡ_ (idx₁ , idx₂) m = (idx₁ Fin.↑ˡ m , idx₂ Fin.↑ˡ m)
_↑ʳ_ : {m} n (Fin m × Fin m) Fin (n Nat.+ m) × Fin (n Nat.+ m)
_↑ʳ_ n (idx₁ , idx₂) = (n Fin.↑ʳ idx₁ , n Fin.↑ʳ idx₂)
_↑ˡⁱ_ : {n} List (Fin n) m List (Fin (n Nat.+ m))
_↑ˡⁱ_ l m = List.map (Fin._↑ˡ m) l
_↑ʳⁱ_ : {m} n List (Fin m) List (Fin (n Nat.+ m))
_↑ʳⁱ_ n l = List.map (n Fin.↑ʳ_) l
_↑ˡᵉ_ : {n} List (Fin n × Fin n) m List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ˡᵉ_ l m = List.map (_↑ˡ m) l
_↑ʳᵉ_ : {m} n List (Fin m × Fin m) List (Fin (n Nat.+ m) × Fin (n Nat.+ m))
_↑ʳᵉ_ n l = List.map (n ↑ʳ_) l
infixl 5 _∙_
_∙_ : Graph Graph Graph
_∙_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂)
; inputs = (Graph.inputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂)
; outputs = (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳⁱ Graph.outputs g₂)
}
↑ˡ-Edge : {n} (Fin n × Fin n) m (Fin (n Nat.+ m) × Fin (n Nat.+ m))
↑ˡ-Edge (idx₁ , idx₂) m = (idx₁ ↑ˡ m , idx₂ ↑ˡ m)
infixl 5 _↦_
_↦_ : Graph Graph Graph
_↦_ g₁ g₂ = record
{ size = Graph.size g₁ Nat.+ Graph.size g₂
; nodes = Graph.nodes g₁ ++ Graph.nodes g₂
; edges = (Graph.edges g₁ ↑ˡᵉ Graph.size g₂) List.++
(Graph.size g₁ ↑ʳᵉ Graph.edges g₂) List.++
(List.cartesianProduct (Graph.outputs g₁ ↑ˡⁱ Graph.size g₂)
(Graph.size g₁ ↑ʳⁱ Graph.inputs g₂))
; inputs = Graph.inputs g₁ ↑ˡⁱ Graph.size g₂
; outputs = Graph.size g₁ ↑ʳⁱ Graph.outputs g₂
}
loop : Graph Graph
loop g = record
{ size = Graph.size g
; nodes = Graph.nodes g
; edges = Graph.edges g List.++
List.cartesianProduct (Graph.outputs g) (Graph.inputs g)
; inputs = Graph.inputs g
; outputs = Graph.outputs g
}
_[_] : (g : Graph) Graph.Index g List BasicStmt
_[_] g idx = lookup (Graph.nodes g) idx
record _⊆_ (g₁ g₂ : Graph) : Set where
constructor Mk-⊆
field
n :
sg₂≡sg₁+n : Graph.size g₂ Graph.size g₁ Nat.+ n
newNodes : Vec (List BasicStmt) n
nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) Graph.nodes g₁ ++ newNodes
e∈g₁⇒e∈g₂ : {e : Graph.Edge g₁}
e ListMem.∈ (Graph.edges g₁)
(↑ˡ-Edge e n) ListMem.∈ (subst (λ m List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
private
castᵉ : {n m : } .(p : n m) (Fin n × Fin n) (Fin m × Fin m)
castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
↑ˡ-assoc : {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
f ↑ˡ n₁ ↑ˡ n₂ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
↑ˡ-assoc zero p = refl
↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
↑ˡ-Edge-assoc : {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) s Nat.+ n₁ Nat.+ n₂)
↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
↑ˡ-Edge-assoc (idx₁ , idx₂) p
rewrite ↑ˡ-assoc idx₁ p
rewrite ↑ˡ-assoc idx₂ p = refl
↑ˡ-identityʳ : {s} (f : Fin s) (p : s Nat.+ 0 s)
f Fin.cast p (f ↑ˡ 0)
↑ˡ-identityʳ zero p = refl
↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
↑ˡ-Edge-identityʳ : {s} (e : Fin s × Fin s) (p : s Nat.+ 0 s)
e castᵉ p (↑ˡ-Edge e 0)
↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
rewrite sym (↑ˡ-identityʳ idx₁ p)
rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
cast∈⇒∈subst : {n m : } (p : n m) (q : m n)
(e : Fin n × Fin n) (es : List (Fin m × Fin m))
castᵉ p e ListMem.∈ es
e ListMem.∈ subst (λ m List (Fin m × Fin m)) q es
cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
rewrite FinProp.cast-is-id refl idx₁
rewrite FinProp.cast-is-id refl idx₂ = e∈es
⊆-trans : {g₁ g₂ g₃ : Graph} g₁ g₂ g₂ g₃ g₁ g₃
⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
(Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
(Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
rewrite cast-is-id refl ns₂
rewrite cast-is-id refl ns₃
with refl nsg₂≡nsg₁++newNodes₁
with refl nsg₃≡nsg₂++newNodes₂ =
record
{ n = n₁ Nat.+ n₂
; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
; newNodes = newNodes₁ ++ newNodes₂
; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
; e∈g₁⇒e∈g₂ = λ {e} e∈g₁
cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
(subst (λ e' e' ListMem.∈ es₃)
(↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
(e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
singleton : List BasicStmt Graph
singleton bss = record
{ size = 1
; nodes = bss []
; edges = []
; inputs = zero []
; outputs = zero []
}
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
buildCfg : Stmt Graph
buildCfg bs₁ = singleton (bs₁ [])
buildCfg (s₁ then s₂) = buildCfg s₁ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = singleton [] (buildCfg s₁ buildCfg s₂) singleton []
buildCfg (while _ repeat s) = loop (buildCfg s singleton [])
instance
IndexRelaxable : Relaxable Graph.Index
IndexRelaxable = record
{ relax = λ { (Mk-⊆ n refl _ _ _) idx idx ↑ˡ n }
}
EdgeRelaxable : Relaxable Graph.Edge
EdgeRelaxable = record
{ relax = λ g₁⊆g₂ (idx₁ , idx₂)
( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
, Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
)
}
open Relaxable {{...}}
pushBasicBlock : List BasicStmt MonotonicGraphFunction Graph.Index
pushBasicBlock bss g =
( record
{ size = Graph.size g Nat.+ 1
; nodes = Graph.nodes g ++ (bss [])
; edges = List.map (λ e ↑ˡ-Edge e 1) (Graph.edges g)
}
, ( Graph.size g ↑ʳ zero
, record
{ n = 1
; sg₂≡sg₁+n = refl
; newNodes = (bss [])
; nsg₂≡nsg₁++newNodes = cast-is-id refl _
; e∈g₁⇒e∈g₂ = λ e∈g₁ x∈xs⇒fx∈fxs (λ e ↑ˡ-Edge e 1) e∈g₁
}
)
)
pushEmptyBlock : MonotonicGraphFunction Graph.Index
pushEmptyBlock = pushBasicBlock []
addEdges : (g : Graph) List (Graph.Edge g) Σ Graph (λ g' g g')
addEdges (MkGraph s ns es) es' =
( record
{ size = s
; nodes = ns
; edges = es' List.++ es
}
, record
{ n = 0
; sg₂≡sg₁+n = +-comm 0 s
; newNodes = []
; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
; e∈g₁⇒e∈g₂ = λ {e} e∈es
cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
(subst (λ e' e' ListMem.∈ _)
(↑ˡ-Edge-identityʳ e (+-comm s 0))
(ListMemProp.∈-++⁺ʳ es' e∈es))
}
)
buildCfg : Stmt MonotonicGraphFunction (Graph.Index Graph.Index)
buildCfg bs₁ = pushBasicBlock (bs₁ []) map (λ g idx (idx , idx))
buildCfg (s₁ then s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) addEdges g ((idx₂ , idx₃) []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) (idx₁ , idx₄) })
buildCfg (if _ then s₁ else s₂) =
(buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx')
addEdges g ((idx , idx₁) (idx , idx₃) (idx₂ , idx') (idx₄ , idx') []) })
map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') (idx , idx') })
buildCfg (while _ repeat s) =
(buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
update (λ { g ((idx₁ , idx₂) , idx , idx')
addEdges g ((idx , idx') (idx , idx₁) (idx₂ , idx) []) })
map (λ { g ((idx₁ , idx₂) , idx , idx') (idx , idx') })
-- record _⊆_ (g₁ g₂ : Graph) : Set where
-- constructor Mk-⊆
-- field
-- n :
-- sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ Nat.+ n
-- newNodes : Vec (List BasicStmt) n
-- nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
-- e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
-- e ListMem.∈ (Graph.edges g₁) →
-- (↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
--
-- private
-- castᵉ : ∀ {n m : } .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
-- castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
--
-- ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
-- f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
-- ↑ˡ-assoc zero p = refl
-- ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
--
-- ↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
-- ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
-- ↑ˡ-Edge-assoc (idx₁ , idx₂) p
-- rewrite ↑ˡ-assoc idx₁ p
-- rewrite ↑ˡ-assoc idx₂ p = refl
--
-- ↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
-- f ≡ Fin.cast p (f ↑ˡ 0)
-- ↑ˡ-identityʳ zero p = refl
-- ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
--
-- ↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
-- e ≡ castᵉ p (↑ˡ-Edge e 0)
-- ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
-- rewrite sym (↑ˡ-identityʳ idx₁ p)
-- rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
--
-- cast∈⇒∈subst : ∀ {n m : } (p : n ≡ m) (q : m ≡ n)
-- (e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
-- castᵉ p e ListMem.∈ es →
-- e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
-- cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
-- rewrite FinProp.cast-is-id refl idx₁
-- rewrite FinProp.cast-is-id refl idx₂ = e∈es
--
-- ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
-- ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
-- (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
-- (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
-- rewrite cast-is-id refl ns₂
-- rewrite cast-is-id refl ns₃
-- with refl ← nsg₂≡nsg₁++newNodes₁
-- with refl ← nsg₃≡nsg₂++newNodes₂ =
-- record
-- { n = n₁ Nat.+ n₂
-- ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
-- ; newNodes = newNodes₁ ++ newNodes₂
-- ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ →
-- cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
-- (subst (λ e' → e' ListMem.∈ es₃)
-- (↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
-- (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
-- }
--
-- open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
--
-- instance
-- IndexRelaxable : Relaxable Graph.Index
-- IndexRelaxable = record
-- { relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n }
-- }
--
-- EdgeRelaxable : Relaxable Graph.Edge
-- EdgeRelaxable = record
-- { relax = λ g₁⊆g₂ (idx₁ , idx₂) →
-- ( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
-- , Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
-- )
-- }
--
-- open Relaxable {{...}}
--
-- pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
-- pushBasicBlock bss g =
-- ( record
-- { size = Graph.size g Nat.+ 1
-- ; nodes = Graph.nodes g ++ (bss ∷ [])
-- ; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
-- }
-- , ( Graph.size g ↑ʳ zero
-- , record
-- { n = 1
-- ; sg₂≡sg₁+n = refl
-- ; newNodes = (bss ∷ [])
-- ; nsg₂≡nsg₁++newNodes = cast-is-id refl _
-- ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
-- }
-- )
-- )
--
-- pushEmptyBlock : MonotonicGraphFunction Graph.Index
-- pushEmptyBlock = pushBasicBlock []
--
-- addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
-- addEdges (MkGraph s ns es) es' =
-- ( record
-- { size = s
-- ; nodes = ns
-- ; edges = es' List.++ es
-- }
-- , record
-- { n = 0
-- ; sg₂≡sg₁+n = +-comm 0 s
-- ; newNodes = []
-- ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈es →
-- cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
-- (subst (λ e' → e' ListMem.∈ _)
-- (↑ˡ-Edge-identityʳ e (+-comm s 0))
-- (ListMemProp.∈-++⁺ʳ es' e∈es))
-- }
-- )
--
-- buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
-- buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
-- buildCfg (s₁ then s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
-- buildCfg (if _ then s₁ else s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
-- addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
-- buildCfg (while _ repeat s) =
-- (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , idx , idx') →
-- addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })

View File

@ -5,48 +5,24 @@ open import Language.Semantics
open import Language.Graphs
open import Language.Traces
open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
open import Utils using (_⊗_; _,_)
open Relaxable {{...}}
open import Data.Fin as Fin using (zero)
open import Data.List using (_∷_; [])
open import Data.Product using (Σ; _,_)
open import Data.Fin using (zero)
open import Data.List using (List; _∷_; [])
open import Data.Vec using (_∷_; [])
open import Data.Vec.Properties using (cast-is-id; lookup-++ˡ; lookup-++ʳ)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; subst)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
relax-preserves-[]≡ : (g₁ g₂ : Graph) (g₁⊆g₂ : g₁ g₂) (idx : Graph.Index g₁)
g₁ [ idx ] g₂ [ relax g₁⊆g₂ idx ]
relax-preserves-[]≡ g₁ g₂ (Mk-⊆ n refl newNodes nsg₂≡nsg₁++newNodes _) idx
rewrite cast-is-id refl (Graph.nodes g₂)
with refl nsg₂≡nsg₁++newNodes = sym (lookup-++ˡ (Graph.nodes g₁) _ _)
buildCfg-input : (s : Stmt) let g = buildCfg s in Σ (Graph.Index g) (λ idx Graph.inputs g idx [])
buildCfg-input bs₁ = (zero , refl)
buildCfg-input (s₁ then s₂)
with (idx , p) buildCfg-input s₁ rewrite p = (_ , refl)
buildCfg-input (if _ then s₁ else s₂) = (zero , refl)
buildCfg-input (while _ repeat s)
with (idx , p) buildCfg-input s rewrite p = (_ , refl)
instance
NodeEqualsMonotonic : {bss : List BasicStmt}
MonotonicPredicate (λ g n g [ n ] bss)
NodeEqualsMonotonic = record
{ relaxPredicate = λ g₁ g₂ idx g₁⊆g₂ g₁[idx]≡bss
trans (sym (relax-preserves-[]≡ g₁ g₂ g₁⊆g₂ idx)) g₁[idx]≡bss
}
pushBasicBlock-works : (bss : List BasicStmt) Always (λ g idx g [ idx ] bss) (pushBasicBlock bss)
pushBasicBlock-works bss = MkAlways (λ g lookup-++ʳ (Graph.nodes g) (bss []) zero)
TransformsEnv : (ρ₁ ρ₂ : Env) DependentPredicate (Graph.Index Graph.Index)
TransformsEnv ρ₁ ρ₂ g (idx₁ , idx₂) = Trace {g} idx₁ idx₂ ρ₁ ρ₂
instance
TransformsEnvMonotonic : {ρ₁ ρ₂ : Env} MonotonicPredicate (TransformsEnv ρ₁ ρ₂)
TransformsEnvMonotonic = {!!}
buildCfg-sufficient : {ρ₁ ρ₂ : Env} {s : Stmt} ρ₁ , s ⇒ˢ ρ₂ Always (TransformsEnv ρ₁ ρ₂) (buildCfg s)
buildCfg-sufficient {ρ₁} {ρ₂} { bs } (⇒ˢ-⟨⟩ ρ₁ ρ₂ bs ρ₁,bs⇒ρ) =
pushBasicBlock-works (bs [])
map-reason
(λ g idx g[idx]≡[bs] Trace-single (subst (ρ₁ ,_⇒ᵇˢ ρ₂)
(sym g[idx]≡[bs])
(ρ₁,bs⇒ρ [])))
buildCfg-sufficient {ρ₁} {ρ₂} {s₁ then s₂} (⇒ˢ-then ρ₁ ρ ρ₂ s₁ s₂ ρ₁,s₁⇒ρ ρ₂,s₂⇒ρ) =
(buildCfg-sufficient ρ₁,s₁⇒ρ ⟨⊗⟩-reason buildCfg-sufficient ρ₂,s₂⇒ρ)
update-reason {!!}
map-reason {!!}
buildCfg-output : (s : Stmt) let g = buildCfg s in Σ (Graph.Index g) (λ idx Graph.outputs g idx [])
buildCfg-output bs₁ = (zero , refl)
buildCfg-output (s₁ then s₂)
with (idx , p) buildCfg-output s₂ rewrite p = (_ , refl)
buildCfg-output (if _ then s₁ else s₂) = (_ , refl)
buildCfg-output (while _ repeat s)
with (idx , p) buildCfg-output s rewrite p = (_ , refl)

View File

@ -1,9 +1,11 @@
module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using ()
open import Data.Nat using (; suc)
open import Data.List using (List; []; _∷_; _++_) renaming (map to mapˡ)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
open import Data.List.Relation.Unary.All using (All; []; _∷_; map)
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
open import Function.Definitions using (Injective)
@ -78,3 +80,9 @@ proj₁ (v , _) = v
proj₂ : {a p q} {A : Set a} {P : A Set p} {Q : A Set q} {a : A} (P Q) a Q a
proj₂ (_ , v) = v
∈-cartesianProduct : {a b} {A : Set a} {B : Set b}
{x : A} {xs : List A} {y : B} {ys : List B}
x xs y ys (x Prod., y) cartesianProduct xs ys
∈-cartesianProduct {x = x} (here refl) y∈ys = ListMemProp.∈-++⁺ˡ (x∈xs⇒fx∈fxs (x Prod.,_) y∈ys)
∈-cartesianProduct {x = x} {xs = x' _} {ys = ys} (there x∈rest) y∈ys = ListMemProp.∈-++⁺ʳ (mapˡ (x' Prod.,_) ys) (∈-cartesianProduct x∈rest y∈ys)