Factor some code out into Utils
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
25
Utils.agda
25
Utils.agda
@@ -1,8 +1,10 @@
|
||||
module Utils where
|
||||
|
||||
open import Agda.Primitive using () renaming (_⊔_ to _⊔ℓ_)
|
||||
open import Data.Product as Prod using (_×_)
|
||||
open import Data.Product as Prod using (Σ; _×_; _,_; proj₁; proj₂)
|
||||
open import Data.Nat using (ℕ; suc)
|
||||
open import Data.Fin as Fin using (Fin; suc; zero)
|
||||
open import Data.Fin.Properties using (suc-injective)
|
||||
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
|
||||
open import Data.List.Membership.Propositional using (_∈_)
|
||||
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
|
||||
@@ -106,3 +108,24 @@ _∧_ P Q a = P a × Q a
|
||||
|
||||
it : ∀ {a} {A : Set a} {{_ : A}} → A
|
||||
it {{x}} = x
|
||||
|
||||
z≢sf : ∀ {n : ℕ} (f : Fin n) → ¬ (Fin.zero ≡ Fin.suc f)
|
||||
z≢sf f ()
|
||||
|
||||
z≢mapsfs : ∀ {n : ℕ} (fs : List (Fin n)) → All (λ sf → ¬ zero ≡ sf) (mapˡ suc fs)
|
||||
z≢mapsfs [] = []
|
||||
z≢mapsfs (f ∷ fs') = z≢sf f ∷ z≢mapsfs fs'
|
||||
|
||||
fins : ∀ (n : ℕ) → Σ (List (Fin n)) Unique
|
||||
fins 0 = ([] , empty)
|
||||
fins (suc n') =
|
||||
let
|
||||
(inds' , unids') = fins n'
|
||||
in
|
||||
( zero ∷ mapˡ suc inds'
|
||||
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
|
||||
)
|
||||
|
||||
fins-complete : ∀ (n : ℕ) (f : Fin n) → f ∈ (proj₁ (fins n))
|
||||
fins-complete (suc n') zero = here refl
|
||||
fins-complete (suc n') (suc f') = there (x∈xs⇒fx∈fxs suc (fins-complete n' f'))
|
||||
|
||||
Reference in New Issue
Block a user