Factor some code out into Utils

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2025-11-28 16:22:17 -08:00
parent f5457d8841
commit c199e9616f
2 changed files with 27 additions and 26 deletions

View File

@@ -1,8 +1,10 @@
module Utils where
open import Agda.Primitive using () renaming (_⊔_ to _⊔_)
open import Data.Product as Prod using (_×_)
open import Data.Product as Prod using (Σ; _×_; _,_; proj₁; proj₂)
open import Data.Nat using (; suc)
open import Data.Fin as Fin using (Fin; suc; zero)
open import Data.Fin.Properties using (suc-injective)
open import Data.List using (List; cartesianProduct; []; _∷_; _++_; foldr; filter) renaming (map to mapˡ)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Membership.Propositional.Properties as ListMemProp using ()
@@ -106,3 +108,24 @@ _∧_ P Q a = P a × Q a
it : {a} {A : Set a} {{_ : A}} A
it {{x}} = x
z≢sf : {n : } (f : Fin n) ¬ (Fin.zero Fin.suc f)
z≢sf f ()
z≢mapsfs : {n : } (fs : List (Fin n)) All (λ sf ¬ zero sf) (mapˡ suc fs)
z≢mapsfs [] = []
z≢mapsfs (f fs') = z≢sf f z≢mapsfs fs'
fins : (n : ) Σ (List (Fin n)) Unique
fins 0 = ([] , empty)
fins (suc n') =
let
(inds' , unids') = fins n'
in
( zero mapˡ suc inds'
, push (z≢mapsfs inds') (Unique-map suc suc-injective unids')
)
fins-complete : (n : ) (f : Fin n) f (proj₁ (fins n))
fins-complete (suc n') zero = here refl
fins-complete (suc n') (suc f') = there (x∈xs⇒fx∈fxs suc (fins-complete n' f'))