Rewrite Forward analysis to use statement-based evaluators.

To keep old (expression-based) analyses working, switch to using
instance search and provide "adapters" that auto-construct statement
analyzers from expression analyzers.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2024-12-31 17:31:01 -08:00
parent f01df5af4b
commit c2c04e3ecd
5 changed files with 462 additions and 342 deletions

View File

@@ -62,7 +62,7 @@ open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = s
open AB.Plain 0ˢ using ()
renaming
( isLattice to isLatticeᵍ
; fixedHeight to fixedHeight
; isFiniteHeightLattice to isFiniteHeightLattice
; _≼_ to _≼ᵍ_
; _⊔_ to _⊔ᵍ_
; _⊓_ to _⊓ᵍ_
@@ -171,8 +171,9 @@ instance
module WithProg (prog : Program) where
open Program prog
module ForwardWithProg = Analysis.Forward.WithProg (record { isLattice = isLatticeᵍ; fixedHeight = fixedHeightᵍ }) ≈ᵍ-dec prog
open ForwardWithProg hiding (analyze-correct)
open import Analysis.Forward.Lattices isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
open import Analysis.Forward.Evaluation isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
open import Analysis.Forward.Adapters isFiniteHeightLatticeᵍ ≈ᵍ-dec prog
eval : (e : Expr) VariableValues SignLattice
eval (e₁ + e₂) vs = plus (eval e₁ vs) (eval e₂ vs)
@@ -184,8 +185,8 @@ module WithProg (prog : Program) where
eval (# 0) _ = [ 0ˢ ]ᵍ
eval (# (suc n')) _ = [ + ]ᵍ
eval-Mono : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Mono (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
eval-Monoʳ : (e : Expr) Monotonic _≼ᵛ_ _≼ᵍ_ (eval e)
eval-Monoʳ (e₁ + e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: can this be done with less boilerplate?
g₁vs₁ = eval e₁ vs₁
@@ -195,9 +196,9 @@ module WithProg (prog : Program) where
in
≼ᵍ-trans
{plus g₁vs₁ g₂vs₁} {plus g₁vs₂ g₂vs₁} {plus g₁vs₂ g₂vs₂}
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
(plus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Monoʳ e₁ {vs₁} {vs₂} vs₁≼vs₂))
(plus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Monoʳ e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Monoʳ (e₁ - e₂) {vs₁} {vs₂} vs₁≼vs₂ =
let
-- TODO: here too -- can this be done with less boilerplate?
g₁vs₁ = eval e₁ vs₁
@@ -207,9 +208,9 @@ module WithProg (prog : Program) where
in
≼ᵍ-trans
{minus g₁vs₁ g₂vs₁} {minus g₁vs₂ g₂vs₁} {minus g₁vs₂ g₂vs₂}
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Mono e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Mono e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Mono (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
(minus-Monoˡ g₂vs₁ {g₁vs₁} {g₁vs₂} (eval-Monoʳ e₁ {vs₁} {vs₂} vs₁≼vs₂))
(minus-Monoʳ g₁vs₂ {g₂vs₁} {g₂vs₂} (eval-Monoʳ e₂ {vs₁} {vs₂} vs₁≼vs₂))
eval-Monoʳ (` k) {vs₁@((kvs₁ , _) , _)} {vs₂@((kvs₂ , _), _)} vs₁≼vs₂
with ∈k-decᵛ k kvs₁ | ∈k-decᵛ k kvs₂
... | yes k∈kvs₁ | yes k∈kvs₂ =
let
@@ -220,15 +221,15 @@ module WithProg (prog : Program) where
... | yes k∈kvs₁ | no k∉kvs₂ = ⊥-elim (k∉kvs₂ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₁ vs₂) k∈kvs₁))
... | no k∉kvs₁ | yes k∈kvs₂ = ⊥-elim (k∉kvs₁ (subst (λ l k ∈ˡ l) (all-equal-keysᵛ vs₂ vs₁) k∈kvs₂))
... | no k∉kvs₁ | no k∉kvs₂ = IsLattice.≈-refl isLatticeᵍ
eval-Mono (# 0) _ = ≈ᵍ-refl
eval-Mono (# (suc n')) _ = ≈ᵍ-refl
eval-Monoʳ (# 0) _ = ≈ᵍ-refl
eval-Monoʳ (# (suc n')) _ = ≈ᵍ-refl
instance
SignEval : Evaluator
SignEval = record { eval = eval; eval-Mono = eval-Mono }
SignEval : ExprEvaluator
SignEval = record { eval = eval; eval-Monoʳ = eval-Monoʳ }
-- For debugging purposes, print out the result.
output = show result
output = show (Analysis.Forward.WithProg.result isFiniteHeightLatticeᵍ ≈ᵍ-dec prog)
-- This should have fewer cases -- the same number as the actual 'plus' above.
-- But agda only simplifies on first argument, apparently, so we are stuck
@@ -280,7 +281,7 @@ module WithProg (prog : Program) where
minus-valid {[ 0ˢ ]ᵍ} {[ 0ˢ ]ᵍ} refl refl = refl
minus-valid {[ 0ˢ ]ᵍ} {⊤ᵍ} _ _ = tt
eval-valid : IsValid
eval-valid : IsValidExprEvaluator
eval-valid (⇒ᵉ-+ ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
plus-valid (eval-valid ρ,e₁⇒z₁ ⟦vs⟧ρ) (eval-valid ρ,e₂⇒z₂ ⟦vs⟧ρ)
eval-valid (⇒ᵉ-- ρ e₁ e₂ z₁ z₂ ρ,e₁⇒z₁ ρ,e₂⇒z₂) ⟦vs⟧ρ =
@@ -292,4 +293,4 @@ module WithProg (prog : Program) where
eval-valid (⇒ᵉ- ρ 0) _ = refl
eval-valid (⇒ᵉ- ρ (suc n')) _ = (n' , refl)
analyze-correct = ForwardWithProg.analyze-correct
analyze-correct = Analysis.Forward.WithProg.analyze-correct