Start moving away from purely list-based maps.

The eventual goal is to make a map be a list and a proof
that all the keys are unique.

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2023-07-24 20:38:34 -07:00
parent f2e72b54ce
commit c50195942d

View File

@ -22,45 +22,60 @@ open import Data.Empty using (⊥)
Map : Set (a b) Map : Set (a b)
Map = List (A × B) Map = List (A × B)
data Unique : List (A × B) Set (a b) where keys : List (A × B) List A
empty : Unique [] keys [] = []
push : forall {k : A} {v : B} {xs : List (A × B)} keys ((k , v) xs) = k keys xs
All (λ (k' , _) ¬ k k') xs
Unique xs
Unique ((k , v) xs)
_∈_ : (A × B) Map Set (a b) data Unique {c} {C : Set c} : List C Set c where
empty : Unique []
push : forall {x : C} {xs : List C}
All (λ x' ¬ x x') xs
Unique xs
Unique (x xs)
_∈_ : (A × B) List (A × B) Set (a b)
_∈_ p m = Data.List.Membership.Propositional._∈_ p m _∈_ p m = Data.List.Membership.Propositional._∈_ p m
subset : (_≈_ : B B Set b) Map Map Set (a b) _∈k_ : A List (A × B) Set a
_∈k_ k m = Data.List.Membership.Propositional._∈_ k (keys m)
subset : (_≈_ : B B Set b) List (A × B) List (A × B) Set (a b)
subset _≈_ m₁ m₂ = (k : A) (v : B) (k , v) m₁ Σ B (λ v' v v' × ((k , v') m₂)) subset _≈_ m₁ m₂ = (k : A) (v : B) (k , v) m₁ Σ B (λ v' v v' × ((k , v') m₂))
lift : (_≈_ : B B Set b) Map Map Set (a b) lift : (_≈_ : B B Set b) List (A × B) List (A × B) Set (a b)
lift _≈_ m₁ m₂ = (m₁ m₂) × (m₂ m₁) lift _≈_ m₁ m₂ = (m₁ m₂) × (m₂ m₁)
where where
_⊆_ : Map Map Set (a b) _⊆_ : List (A × B) List (A × B) Set (a b)
_⊆_ = subset _≈_ _⊆_ = subset _≈_
foldr : {c} {C : Set c} (A B C C) -> C -> Map -> C foldr : {c} {C : Set c} (A B C C) -> C -> List (A × B) -> C
foldr f b [] = b foldr f b [] = b
foldr f b ((k , v) xs) = f k v (foldr f b xs) foldr f b ((k , v) xs) = f k v (foldr f b xs)
insert : (B B B) A B Map Map insert : (B B B) A B List (A × B) List (A × B)
insert f k v [] = (k , v) [] insert f k v [] = (k , v) []
insert f k v (x@(k' , v') xs) with ≡-dec-A k k' insert f k v (x@(k' , v') xs) with ≡-dec-A k k'
... | yes _ = (k , f v v') xs ... | yes _ = (k' , f v v') xs
... | no _ = x insert f k v xs ... | no _ = x insert f k v xs
merge : (B B B) Map Map Map merge : (B B B) List (A × B) List (A × B) List (A × B)
merge f m₁ m₂ = foldr (insert f) m₂ m₁ merge f m₁ m₂ = foldr (insert f) m₂ m₁
Map-functional : (k : A) (v v' : B) (xs : List (A × B)) Unique ((k , v) xs) Data.List.Membership.Propositional._∈_ (k , v') ((k , v) xs) v v' absurd : {a} {A : Set a} A
absurd ()
insert-keys-∈ : (f : B B B) (k : A) (v : B) (l : List (A × B)) k ∈k l keys l keys (insert f k v l)
insert-keys-∈ f k v ((k' , v') xs) (here k≡k') with (≡-dec-A k k')
... | yes _ = refl
... | no k≢k' = absurd (k≢k' k≡k')
insert-keys-∈ f k v ((k' , _) xs) (there k∈kxs) with (≡-dec-A k k')
... | yes _ = refl
... | no _ = cong (λ xs' k' xs') (insert-keys-∈ f k v xs k∈kxs)
Map-functional : (k : A) (v v' : B) (xs : List (A × B)) Unique (keys ((k , v) xs)) Data.List.Membership.Propositional._∈_ (k , v') ((k , v) xs) v v'
Map-functional k v v' _ _ (here k,v'≡k,v) = sym (cong proj₂ k,v'≡k,v) Map-functional k v v' _ _ (here k,v'≡k,v) = sym (cong proj₂ k,v'≡k,v)
Map-functional k v v' xs (push k≢ _) (there k,v'∈xs) = absurd (unique-not-in xs v' (k≢ , k,v'∈xs)) Map-functional k v v' xs (push k≢ _) (there k,v'∈xs) = absurd (unique-not-in xs v' (k≢ , k,v'∈xs))
where where
absurd : {a} {A : Set a} A unique-not-in : (xs : List (A × B)) (v' : B) ¬ (All (λ k' ¬ k k') (keys xs) × (k , v') xs)
absurd ()
unique-not-in : (xs : List (A × B)) (v' : B) ¬ (All (λ (k' , _) ¬ k k') xs × (k , v') xs)
unique-not-in ((k' , _) xs) v' (k≢k' _ , here k',≡x) = k≢k' (cong proj₁ k',≡x) unique-not-in ((k' , _) xs) v' (k≢k' _ , here k',≡x) = k≢k' (cong proj₁ k',≡x)
unique-not-in (_ xs) v' (_ rest , there k,v'∈xs) = unique-not-in xs v' (rest , k,v'∈xs) unique-not-in (_ xs) v' (_ rest , there k,v'∈xs) = unique-not-in xs v' (rest , k,v'∈xs)