Minor cleanup of Map module
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
		
							parent
							
								
									850984ec15
								
							
						
					
					
						commit
						c9ab1152c4
					
				
							
								
								
									
										18
									
								
								Map.agda
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								Map.agda
									
									
									
									
									
								
							| @ -29,9 +29,6 @@ data Unique {c} {C : Set c} : List C → Set c where | |||||||
|         → Unique xs |         → Unique xs | ||||||
|         → Unique (x ∷ xs) |         → Unique (x ∷ xs) | ||||||
| 
 | 
 | ||||||
| Map : Set (a ⊔ b) |  | ||||||
| Map = Σ (List (A × B)) (λ l → Unique (keys l)) |  | ||||||
| 
 |  | ||||||
| Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} → ¬ MemProp._∈_ x xs → Unique xs →  Unique (xs ++ (x ∷ [])) | Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} → ¬ MemProp._∈_ x xs → Unique xs →  Unique (xs ++ (x ∷ [])) | ||||||
| Unique-append {c} {C} {x} {[]} _ _ = push [] empty | Unique-append {c} {C} {x} {[]} _ _ = push [] empty | ||||||
| Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') = push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs') | Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') = push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs') | ||||||
| @ -43,24 +40,27 @@ Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') = push (help x' | |||||||
|         help {[]} _ = x'≢x ∷ [] |         help {[]} _ = x'≢x ∷ [] | ||||||
|         help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es |         help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es | ||||||
| 
 | 
 | ||||||
| _∈_ : (A × B) → List (A × B) → Set (a ⊔ b) | Map : Set (a ⊔ b) | ||||||
| _∈_ p m = MemProp._∈_ p m | Map = Σ (List (A × B)) (λ l → Unique (keys l)) | ||||||
| 
 | 
 | ||||||
| foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C | _∈_ : (A × B) → Map → Set (a ⊔ b) | ||||||
| foldr f b [] = b | _∈_ p (kvs , _) = MemProp._∈_ p kvs | ||||||
| foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs) |  | ||||||
| 
 | 
 | ||||||
| absurd : ∀ {a} {A : Set a} →  ⊥ → A | absurd : ∀ {a} {A : Set a} →  ⊥ → A | ||||||
| absurd () | absurd () | ||||||
| 
 | 
 | ||||||
| private module ImplRelation (_≈_ : B → B → Set b) where | private module ImplRelation (_≈_ : B → B → Set b) where | ||||||
|     subset : List (A × B) → List (A × B) → Set (a ⊔ b) |     subset : List (A × B) → List (A × B) → Set (a ⊔ b) | ||||||
|     subset m₁ m₂ = ∀ (k : A) (v : B) → (k , v) ∈ m₁ → Σ B (λ v' → v ≈ v' × ((k , v') ∈ m₂)) |     subset m₁ m₂ = ∀ (k : A) (v : B) → MemProp._∈_ (k , v) m₁ → Σ B (λ v' → v ≈ v' × (MemProp._∈_ (k , v') m₂)) | ||||||
| 
 | 
 | ||||||
| private module ImplInsert (f : B → B → B) where | private module ImplInsert (f : B → B → B) where | ||||||
|     _∈k_ : A → List (A × B) → Set a |     _∈k_ : A → List (A × B) → Set a | ||||||
|     _∈k_ k m = MemProp._∈_ k (keys m) |     _∈k_ k m = MemProp._∈_ k (keys m) | ||||||
| 
 | 
 | ||||||
|  |     foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> List (A × B) -> C | ||||||
|  |     foldr f b [] = b | ||||||
|  |     foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs) | ||||||
|  | 
 | ||||||
|     insert : A → B → List (A × B) → List (A × B) |     insert : A → B → List (A × B) → List (A × B) | ||||||
|     insert k v [] = (k , v) ∷ [] |     insert k v [] = (k , v) ∷ [] | ||||||
|     insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k' |     insert k v (x@(k' , v') ∷ xs) with ≡-dec-A k k' | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user