Add some helpers

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2025-11-29 13:24:27 -08:00
parent eb2d64f3b5
commit d1700f23fa
2 changed files with 31 additions and 2 deletions

View File

@@ -2,7 +2,7 @@ module Lattice.Builder where
open import Lattice
open import Equivalence
open import Utils using (Unique; fins; fins-complete)
open import Utils using (Unique; push; empty; Unique-append; All¬-¬Any; ¬Any-map; fins; fins-complete)
open import Data.Nat as Nat using ()
open import Data.Fin as Fin using (Fin; suc; zero; _≟_)
open import Data.Maybe as Maybe using (Maybe; just; nothing; _>>=_; maybe)
@@ -13,7 +13,9 @@ open import Data.List.Membership.Propositional as MemProp using () renaming (_
open import Data.List.Membership.Propositional.Properties using () renaming (∈-++⁺ʳ to ∈ˡ-++⁺ʳ; ∈-++⁺ˡ to ∈ˡ-++⁺ˡ; ∈-cartesianProductWith⁺ to ∈ˡ-cartesianProductWith⁺)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.List.Relation.Unary.All using (All; []; _∷_; map; lookup)
open import Data.List.Relation.Unary.All.Properties using () renaming (++⁺ to ++ˡ⁺)
open import Data.List using (List; _∷_; []; cartesianProduct; cartesianProductWith; foldr) renaming (_++_ to _++ˡ_)
open import Data.List.Properties using () renaming (++-conicalʳ to ++ˡ-conicalʳ)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (Σ; _,_; _×_; proj₁; proj₂)
open import Data.Empty using (⊥; ⊥-elim)
@@ -47,14 +49,38 @@ record Graph : Set where
done ++ p = p
(step e p₁) ++ p₂ = step e (p₁ ++ p₂)
++done : {n₁ n₂} (p : Path n₁ n₂) p ++ done p
++done done = refl
++done (step e∈edges p) rewrite ++done p = refl
interior : {n₁ n₂} Path n₁ n₂ List Node
interior done = []
interior (step _ done) = []
interior (step {n₂ = n₂} _ p) = n₂ interior p
interior-extend : {n₁ n₂ n₃} (p : Path n₁ n₂) (n₂,n₃∈edges : (n₂ , n₃) ∈ˡ edges)
let p' = (p ++ (step n₂,n₃∈edges done))
in (interior p' interior p) (interior p' interior p ++ˡ (n₂ []))
interior-extend done _ = inj₁ refl
interior-extend (step n₁,n₂∈edges done) n₂n₃∈edges = inj₂ refl
interior-extend {n₂ = n₂} (step {n₂ = n} n₁,n∈edges p@(step _ _)) n₂n₃∈edges
with p ++ (step n₂n₃∈edges done) | interior-extend p n₂n₃∈edges
... | done | inj₁ []≡intp rewrite sym []≡intp = inj₁ refl
... | done | inj₂ []=intp++[n₂] with () ++ˡ-conicalʳ (interior p) (n₂ []) (sym []=intp++[n₂])
... | step _ p | inj₁ IH rewrite IH = inj₁ refl
... | step _ p | inj₂ IH rewrite IH = inj₂ refl
SimpleWalkVia : List Node Node Node Set
SimpleWalkVia ns n₁ n₂ = Σ (Path n₁ n₂) (λ p Unique (interior p) × All (λ n n ∈ˡ ns) (interior p))
SimpleWalk-extend : {n₁ n₂ n₃ ns} (w : SimpleWalkVia ns n₁ n₂) (n₂ , n₃) ∈ˡ edges All (λ ¬ n₂) (interior (proj₁ w)) n₂ ∈ˡ ns SimpleWalkVia ns n₁ n₃
SimpleWalk-extend (p , (Unique-intp , intp⊆ns)) n₂,n₃∈edges w≢n₂ n₂∈ns
with p ++ (step n₂,n₃∈edges done) | interior-extend p n₂,n₃∈edges
... | p' | inj₁ intp'≡intp rewrite sym intp'≡intp = (p' , Unique-intp , intp⊆ns)
... | p' | inj₂ intp'≡intp++[n₂]
with intp++[n₂]⊆ns ++ˡ⁺ intp⊆ns (n₂∈ns [])
rewrite sym intp'≡intp++[n₂] = (p' , (subst Unique (sym intp'≡intp++[n₂]) (Unique-append (¬Any-map sym (All¬-¬Any w≢n₂)) Unique-intp) , intp++[n₂]⊆ns))
postulate SplitSimpleWalkVia : {n n₁ n₂ ns} (w : SimpleWalkVia (n ns) n₁ n₂) (Σ (SimpleWalkVia ns n₁ n × SimpleWalkVia ns n n₂) λ (w₁ , w₂) proj₁ w₁ ++ proj₁ w₂ proj₁ w) (Σ (SimpleWalkVia ns n₁ n₂) λ w' proj₁ w' proj₁ w)
postulate findCycle : {n₁ n₂} (p : Path n₁ n₂) (Σ (SimpleWalkVia (proj₁ nodes) n₁ n₂) λ w proj₁ w p) (Σ Node (λ n Σ (SimpleWalkVia (proj₁ nodes) n n) λ w ¬ proj₁ w done))