Clean up 'Map' to hide implementation details, extract code
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
1b8c88b1a2
commit
d718338759
104
Lattice/Map.agda
104
Lattice/Map.agda
|
@ -19,6 +19,7 @@ open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-ex
|
||||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||||
open import Data.Empty using (⊥; ⊥-elim)
|
open import Data.Empty using (⊥; ⊥-elim)
|
||||||
open import Equivalence
|
open import Equivalence
|
||||||
|
open import Utils using (Unique; push; empty; Unique-append; All¬-¬Any)
|
||||||
|
|
||||||
open IsLattice lB using () renaming
|
open IsLattice lB using () renaming
|
||||||
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
( ≈-refl to ≈₂-refl; ≈-sym to ≈₂-sym; ≈-trans to ≈₂-trans
|
||||||
|
@ -28,34 +29,10 @@ open IsLattice lB using () renaming
|
||||||
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
; absorb-⊔-⊓ to absorb-⊔₂-⊓₂; absorb-⊓-⊔ to absorb-⊓₂-⊔₂
|
||||||
)
|
)
|
||||||
|
|
||||||
module ImplKeys where
|
private module ImplKeys where
|
||||||
keys : List (A × B) → List A
|
keys : List (A × B) → List A
|
||||||
keys = map proj₁
|
keys = map proj₁
|
||||||
|
|
||||||
data Unique {c} {C : Set c} : List C → Set c where
|
|
||||||
empty : Unique []
|
|
||||||
push : ∀ {x : C} {xs : List C}
|
|
||||||
→ All (λ x' → ¬ x ≡ x') xs
|
|
||||||
→ Unique xs
|
|
||||||
→ Unique (x ∷ xs)
|
|
||||||
|
|
||||||
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} →
|
|
||||||
¬ MemProp._∈_ x xs → Unique xs → Unique (xs ++ (x ∷ []))
|
|
||||||
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
|
|
||||||
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
|
|
||||||
push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
|
|
||||||
where
|
|
||||||
x'≢x : ¬ x' ≡ x
|
|
||||||
x'≢x x'≡x = x∉xs (here (sym x'≡x))
|
|
||||||
|
|
||||||
help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ []))
|
|
||||||
help {[]} _ = x'≢x ∷ []
|
|
||||||
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
|
|
||||||
|
|
||||||
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
|
|
||||||
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
|
||||||
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
|
||||||
|
|
||||||
private module _ where
|
private module _ where
|
||||||
open MemProp using (_∈_)
|
open MemProp using (_∈_)
|
||||||
open ImplKeys
|
open ImplKeys
|
||||||
|
@ -559,45 +536,46 @@ Expr-Provenance k (e₁ ∩ e₂) k∈ke₁e₂
|
||||||
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
... | no k∉ke₁ | yes k∈ke₂ = ⊥-elim (intersect-preserves-∉₁ {l₂ = proj₁ ⟦ e₂ ⟧} k∉ke₁ k∈ke₁e₂)
|
||||||
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
... | no k∉ke₁ | no k∉ke₂ = ⊥-elim (intersect-preserves-∉₂ {l₁ = proj₁ ⟦ e₁ ⟧} k∉ke₂ k∈ke₁e₂)
|
||||||
|
|
||||||
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
|
||||||
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
|
||||||
mismatch : (k : A) (v₁ v₂ : B) → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → ¬ v₁ ≈₂ v₂ → SubsetInfo m₁ m₂
|
|
||||||
fine : m₁ ⊆ m₂ → SubsetInfo m₁ m₂
|
|
||||||
|
|
||||||
SubsetInfo-to-dec : ∀ {m₁ m₂ : Map} → SubsetInfo m₁ m₂ → Dec (m₁ ⊆ m₂)
|
|
||||||
SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) =
|
|
||||||
let (v , k,v∈m₁) = locate k∈km₁
|
|
||||||
in no (λ m₁⊆m₂ →
|
|
||||||
let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
|
||||||
in k∉km₂ (∈-cong proj₁ k,v'∈m₂))
|
|
||||||
SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) =
|
|
||||||
no (λ m₁⊆m₂ →
|
|
||||||
let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁
|
|
||||||
in v₁̷≈v₂ (subst (λ v'' → v₁ ≈₂ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst...
|
|
||||||
SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂
|
|
||||||
|
|
||||||
module _ (≈₂-dec : ∀ (b₁ b₂ : B) → Dec (b₁ ≈₂ b₂)) where
|
module _ (≈₂-dec : ∀ (b₁ b₂ : B) → Dec (b₁ ≈₂ b₂)) where
|
||||||
compute-SubsetInfo : ∀ m₁ m₂ → SubsetInfo m₁ m₂
|
private module _ where
|
||||||
compute-SubsetInfo ([] , _) m₂ = fine (λ k v ())
|
data SubsetInfo (m₁ m₂ : Map) : Set (a ⊔ℓ b) where
|
||||||
compute-SubsetInfo m₁@((k , v) ∷ xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂)
|
extra : (k : A) → k ∈k m₁ → ¬ k ∈k m₂ → SubsetInfo m₁ m₂
|
||||||
with compute-SubsetInfo (xs₁ , uxs₁) m₂
|
mismatch : (k : A) (v₁ v₂ : B) → (k , v₁) ∈ m₁ → (k , v₂) ∈ m₂ → ¬ v₁ ≈₂ v₂ → SubsetInfo m₁ m₂
|
||||||
... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂
|
fine : m₁ ⊆ m₂ → SubsetInfo m₁ m₂
|
||||||
... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ =
|
|
||||||
mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂
|
SubsetInfo-to-dec : ∀ {m₁ m₂ : Map} → SubsetInfo m₁ m₂ → Dec (m₁ ⊆ m₂)
|
||||||
... | fine xs₁⊆m₂ with ∈k-dec k l₂
|
SubsetInfo-to-dec (extra k k∈km₁ k∉km₂) =
|
||||||
... | no k∉km₂ = extra k (here refl) k∉km₂
|
let (v , k,v∈m₁) = locate k∈km₁
|
||||||
... | yes k∈km₂ with locate k∈km₂
|
in no (λ m₁⊆m₂ →
|
||||||
... | (v' , k,v'∈m₂) with ≈₂-dec v v'
|
let (v' , (_ , k,v'∈m₂)) = m₁⊆m₂ k v k,v∈m₁
|
||||||
... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v'
|
in k∉km₂ (∈-cong proj₁ k,v'∈m₂))
|
||||||
... | yes v≈v' = fine m₁⊆m₂
|
SubsetInfo-to-dec {m₁} {m₂} (mismatch k v₁ v₂ k,v₁∈m₁ k,v₂∈m₂ v₁̷≈v₂) =
|
||||||
where
|
no (λ m₁⊆m₂ →
|
||||||
m₁⊆m₂ : m₁ ⊆ m₂
|
let (v' , (v₁≈v' , k,v'∈m₂)) = m₁⊆m₂ k v₁ k,v₁∈m₁
|
||||||
m₁⊆m₂ k' v'' (here k,v≡k',v'')
|
in v₁̷≈v₂ (subst (λ v'' → v₁ ≈₂ v'') (Map-functional {k} {v'} {v₂} {m₂} k,v'∈m₂ k,v₂∈m₂) v₁≈v')) -- for some reason, can't just use subst...
|
||||||
rewrite cong proj₁ k,v≡k',v''
|
SubsetInfo-to-dec (fine m₁⊆m₂) = yes m₁⊆m₂
|
||||||
rewrite cong proj₂ k,v≡k',v'' =
|
|
||||||
(v' , (v≈v' , k,v'∈m₂))
|
compute-SubsetInfo : ∀ m₁ m₂ → SubsetInfo m₁ m₂
|
||||||
m₁⊆m₂ k' v'' (there k,v≡k',v'') =
|
compute-SubsetInfo ([] , _) m₂ = fine (λ k v ())
|
||||||
xs₁⊆m₂ k' v'' k,v≡k',v''
|
compute-SubsetInfo m₁@((k , v) ∷ xs₁ , push k≢xs₁ uxs₁) m₂@(l₂ , u₂)
|
||||||
|
with compute-SubsetInfo (xs₁ , uxs₁) m₂
|
||||||
|
... | extra k' k'∈kxs₁ k'∉km₂ = extra k' (there k'∈kxs₁) k'∉km₂
|
||||||
|
... | mismatch k' v₁ v₂ k',v₁∈xs₁ k',v₂∈m₂ v₁̷≈v₂ =
|
||||||
|
mismatch k' v₁ v₂ (there k',v₁∈xs₁) k',v₂∈m₂ v₁̷≈v₂
|
||||||
|
... | fine xs₁⊆m₂ with ∈k-dec k l₂
|
||||||
|
... | no k∉km₂ = extra k (here refl) k∉km₂
|
||||||
|
... | yes k∈km₂ with locate k∈km₂
|
||||||
|
... | (v' , k,v'∈m₂) with ≈₂-dec v v'
|
||||||
|
... | no v̷≈v' = mismatch k v v' (here refl) (k,v'∈m₂) v̷≈v'
|
||||||
|
... | yes v≈v' = fine m₁⊆m₂
|
||||||
|
where
|
||||||
|
m₁⊆m₂ : m₁ ⊆ m₂
|
||||||
|
m₁⊆m₂ k' v'' (here k,v≡k',v'')
|
||||||
|
rewrite cong proj₁ k,v≡k',v''
|
||||||
|
rewrite cong proj₂ k,v≡k',v'' =
|
||||||
|
(v' , (v≈v' , k,v'∈m₂))
|
||||||
|
m₁⊆m₂ k' v'' (there k,v≡k',v'') =
|
||||||
|
xs₁⊆m₂ k' v'' k,v≡k',v''
|
||||||
|
|
||||||
⊆-dec : ∀ m₁ m₂ → Dec (m₁ ⊆ m₂)
|
⊆-dec : ∀ m₁ m₂ → Dec (m₁ ⊆ m₂)
|
||||||
⊆-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂)
|
⊆-dec m₁ m₂ = SubsetInfo-to-dec (compute-SubsetInfo m₁ m₂)
|
||||||
|
|
32
Utils.agda
Normal file
32
Utils.agda
Normal file
|
@ -0,0 +1,32 @@
|
||||||
|
module Utils where
|
||||||
|
|
||||||
|
open import Data.List using (List; []; _∷_; _++_)
|
||||||
|
open import Data.List.Membership.Propositional using (_∈_)
|
||||||
|
open import Data.List.Relation.Unary.All using (All; []; _∷_)
|
||||||
|
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||||
|
open import Relation.Binary.PropositionalEquality using (_≡_; sym)
|
||||||
|
open import Relation.Nullary using (¬_)
|
||||||
|
|
||||||
|
data Unique {c} {C : Set c} : List C → Set c where
|
||||||
|
empty : Unique []
|
||||||
|
push : ∀ {x : C} {xs : List C}
|
||||||
|
→ All (λ x' → ¬ x ≡ x') xs
|
||||||
|
→ Unique xs
|
||||||
|
→ Unique (x ∷ xs)
|
||||||
|
|
||||||
|
Unique-append : ∀ {c} {C : Set c} {x : C} {xs : List C} →
|
||||||
|
¬ x ∈ xs → Unique xs → Unique (xs ++ (x ∷ []))
|
||||||
|
Unique-append {c} {C} {x} {[]} _ _ = push [] empty
|
||||||
|
Unique-append {c} {C} {x} {x' ∷ xs'} x∉xs (push x'≢ uxs') =
|
||||||
|
push (help x'≢) (Unique-append (λ x∈xs' → x∉xs (there x∈xs')) uxs')
|
||||||
|
where
|
||||||
|
x'≢x : ¬ x' ≡ x
|
||||||
|
x'≢x x'≡x = x∉xs (here (sym x'≡x))
|
||||||
|
|
||||||
|
help : {l : List C} → All (λ x'' → ¬ x' ≡ x'') l → All (λ x'' → ¬ x' ≡ x'') (l ++ (x ∷ []))
|
||||||
|
help {[]} _ = x'≢x ∷ []
|
||||||
|
help {e ∷ es} (x'≢e ∷ x'≢es) = x'≢e ∷ help x'≢es
|
||||||
|
|
||||||
|
All¬-¬Any : ∀ {p c} {C : Set c} {P : C → Set p} {l : List C} → All (λ x → ¬ P x) l → ¬ Any P l
|
||||||
|
All¬-¬Any {l = x ∷ xs} (¬Px ∷ _) (here Px) = ¬Px Px
|
||||||
|
All¬-¬Any {l = x ∷ xs} (_ ∷ ¬Pxs) (there Pxs) = All¬-¬Any ¬Pxs Pxs
|
Loading…
Reference in New Issue
Block a user