Prove that maps are functional assuming uniqueness
This commit is contained in:
parent
ab7ed2039a
commit
d9c18fe483
@ -76,7 +76,6 @@ module IsEquivalenceInstances where
|
||||
|
||||
open import Map A B ≡-dec-A using (Map; lift; subset; insert)
|
||||
open import Data.List using (_∷_; []) -- TODO: re-export these with nicer names from map
|
||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||
|
||||
open IsEquivalence eB renaming
|
||||
( ≈-refl to ≈₂-refl
|
||||
|
43
Map.agda
43
Map.agda
@ -1,4 +1,4 @@
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl)
|
||||
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; cong)
|
||||
open import Relation.Binary.Definitions using (Decidable)
|
||||
open import Relation.Binary.Core using (Rel)
|
||||
open import Relation.Nullary using (Dec; yes; no)
|
||||
@ -8,26 +8,25 @@ module Map {a b : Level} (A : Set a) (B : Set b)
|
||||
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||
where
|
||||
|
||||
open import Relation.Nullary using (¬_)
|
||||
open import Data.Nat using (ℕ)
|
||||
open import Data.String using (String; _++_)
|
||||
open import Data.List using (List; []; _∷_)
|
||||
open import Data.List.Membership.Propositional using ()
|
||||
open import Data.Product using (_×_; _,_; Σ)
|
||||
open import Data.List.Relation.Unary.All using (All; _∷_)
|
||||
open import Data.List.Relation.Unary.Any using (Any; here; there) -- TODO: re-export these with nicer names from map
|
||||
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||
open import Data.Unit using (⊤)
|
||||
open import Data.Empty using (⊥)
|
||||
|
||||
Map : Set (a ⊔ b)
|
||||
Map = List (A × B)
|
||||
|
||||
insert : (B → B → B) → A → B → Map → Map
|
||||
insert f k v [] = (k , v) ∷ []
|
||||
insert f k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
||||
... | yes _ = (k , f v v') ∷ xs
|
||||
... | no _ = x ∷ insert f k v xs
|
||||
record ⊤' : Set (a ⊔ b) where
|
||||
|
||||
foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> Map -> C
|
||||
foldr f b [] = b
|
||||
foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs)
|
||||
Unique : List (A × B) → Set (a ⊔ b)
|
||||
Unique [] = ⊤'
|
||||
Unique ((k , _) ∷ xs) = All (λ (k' , _) → ¬ k ≡ k') xs × Unique xs
|
||||
|
||||
_∈_ : (A × B) → Map → Set (a ⊔ b)
|
||||
_∈_ p m = Data.List.Membership.Propositional._∈_ p m
|
||||
@ -40,3 +39,27 @@ lift _≈_ m₁ m₂ = (m₁ ⊆ m₂) × (m₂ ⊆ m₁)
|
||||
where
|
||||
_⊆_ : Map → Map → Set (a ⊔ b)
|
||||
_⊆_ = subset _≈_
|
||||
|
||||
foldr : ∀ {c} {C : Set c} → (A → B → C → C) -> C -> Map -> C
|
||||
foldr f b [] = b
|
||||
foldr f b ((k , v) ∷ xs) = f k v (foldr f b xs)
|
||||
|
||||
insert : (B → B → B) → A → B → Map → Map
|
||||
insert f k v [] = (k , v) ∷ []
|
||||
insert f k v (x@(k' , v') ∷ xs) with ≡-dec-A k k'
|
||||
... | yes _ = (k , f v v') ∷ xs
|
||||
... | no _ = x ∷ insert f k v xs
|
||||
|
||||
merge : (B → B → B) → Map → Map → Map
|
||||
merge f m₁ m₂ = foldr (insert f) m₂ m₁
|
||||
|
||||
Map-functional : ∀ (k : A) (v v' : B) (xs : List (A × B)) → Unique ((k , v) ∷ xs) → Data.List.Membership.Propositional._∈_ (k , v') ((k , v) ∷ xs) → v ≡ v'
|
||||
Map-functional k v v' _ _ (here k,v'≡k,v) = sym (cong proj₂ k,v'≡k,v)
|
||||
Map-functional k v v' xs (k≢ , _) (there k,v'∈xs) = absurd (unique-not-in xs v' (k≢ , k,v'∈xs))
|
||||
where
|
||||
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
||||
absurd ()
|
||||
|
||||
unique-not-in : ∀ (xs : List (A × B)) (v' : B) → ¬ (All (λ (k' , _) → ¬ k ≡ k') xs × (k , v') ∈ xs)
|
||||
unique-not-in ((k' , _) ∷ xs) v' (k≢k' ∷ _ , here k',≡x) = k≢k' (cong proj₁ k',≡x)
|
||||
unique-not-in (_ ∷ xs) v' (_ ∷ rest , there k,v'∈xs) = unique-not-in xs v' (rest , k,v'∈xs)
|
||||
|
Loading…
Reference in New Issue
Block a user