Make code less brittle for when \McL changes

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
2026-02-16 19:43:10 -08:00
parent c64504b819
commit da2b6dd5c6

View File

@@ -615,37 +615,43 @@ record Graph : Set where
Elem : Set
Elem = Σ Node λ n (proj₁ (𝓛 n))
LatticeT : Node Set
LatticeT n = proj₁ (𝓛 n)
FHL : (n : Node) FiniteHeightLattice (LatticeT n)
FHL n = proj₂ (𝓛 n)
data _≈_ : Elem Elem Set where
≈-lift : {n : Node} {l₁ l₂ : proj₁ (𝓛 n)}
FiniteHeightLattice._≈_ (proj₂ (𝓛 n)) l₁ l₂
≈-lift : {n : Node} {l₁ l₂ : LatticeT n}
FiniteHeightLattice._≈_ (FHL n) l₁ l₂
(n , l₁) (n , l₂)
≈-refl : {e : Elem} e e
≈-refl {n , l} = ≈-lift (FiniteHeightLattice.≈-refl (proj₂ (𝓛 n)))
≈-refl {n , l} = ≈-lift (FiniteHeightLattice.≈-refl (FHL n))
≈-sym : {e₁ e₂ : Elem} e₁ e₂ e₂ e₁
≈-sym {n₁ , l₁} (≈-lift l₁≈l₂) = ≈-lift (FiniteHeightLattice.≈-sym (proj₂ (𝓛 n₁)) l₁≈l₂)
≈-sym {n₁ , l₁} (≈-lift l₁≈l₂) = ≈-lift (FiniteHeightLattice.≈-sym (FHL n₁) l₁≈l₂)
≈-trans : {e₁ e₂ e₃ : Elem} e₁ e₂ e₂ e₃ e₁ e₃
≈-trans {n₁ , l₁} (≈-lift l₁≈l₂) (≈-lift l₂≈l₃) = ≈-lift (FiniteHeightLattice.≈-trans (proj₂ (𝓛 n₁)) l₁≈l₂ l₂≈l₃)
≈-trans {n₁ , l₁} (≈-lift l₁≈l₂) (≈-lift l₂≈l₃) = ≈-lift (FiniteHeightLattice.≈-trans (FHL n₁) l₁≈l₂ l₂≈l₃)
_⊔_ : Elem Elem Elem
_⊔_ e₁ e₂
using n₁ proj₁ e₁ using n₂ proj₁ e₂
using n' n₁ ⊔ᵇ n₂ = (n' , select n' e₁ e₂)
where
select : n' e₁ e₂ proj₁ (𝓛 n')
select : n' e₁ e₂ LatticeT n'
select n' (n₁ , l₁) (n₂ , l₂)
with n' n₁ | n' n₂
... | yes refl | yes refl = FiniteHeightLattice._⊔_ (proj₂ (𝓛 n')) l₁ l₂
... | yes refl | yes refl = FiniteHeightLattice._⊔_ (FHL n') l₁ l₂
... | yes refl | _ = l₁
... | _ | yes refl = l₂
... | no _ | no _ = FiniteHeightLattice.⊥ (proj₂ (𝓛 n'))
... | no _ | no _ = FiniteHeightLattice.⊥ (FHL n')
⊔-idemp : e (e e) e
⊔-idemp (n , l) rewrite ⊔ᵇ-idemp n
with n n
... | yes refl = ≈-lift (FiniteHeightLattice.⊔-idemp (proj₂ (𝓛 n)) l)
... | yes refl = ≈-lift (FiniteHeightLattice.⊔-idemp (FHL n) l)
... | no n≢n = ⊥-elim (n≢n refl)
⊔-comm : (e₁ e₂ : Elem) (e₁ e₂) (e₂ e₁)
@@ -653,10 +659,10 @@ record Graph : Set where
rewrite ⊔ᵇ-comm n₁ n₂
with n n₂ ⊔ᵇ n₁
with n n₁ | n n₂
... | yes refl | yes refl = ≈-lift (FiniteHeightLattice.⊔-comm (proj₂ (𝓛 n)) l₁ l₂)
... | no _ | yes refl = ≈-lift (FiniteHeightLattice.≈-refl (proj₂ (𝓛 n)))
... | yes refl | no _ = ≈-lift (FiniteHeightLattice.≈-refl (proj₂ (𝓛 n)))
... | no _ | no _ = ≈-lift (FiniteHeightLattice.≈-refl (proj₂ (𝓛 n)))
... | yes refl | yes refl = ≈-lift (FiniteHeightLattice.⊔-comm (FHL n) l₁ l₂)
... | no _ | yes refl = ≈-lift (FiniteHeightLattice.≈-refl (FHL n))
... | yes refl | no _ = ≈-lift (FiniteHeightLattice.≈-refl (FHL n))
... | no _ | no _ = ≈-lift (FiniteHeightLattice.≈-refl (FHL n))
private
scary : (n₁ n₂ : Node) (p : n₁ n₂) (n₁ n₂) subst (λ n Dec (n₁ n)) p (yes refl)
@@ -665,10 +671,10 @@ record Graph : Set where
... | no n₁≢n₂ = ⊥-elim (n₁≢n₂ refl)
payloadˡ : e₁ e₂ e₃ let n = proj₁ ((e₁ e₂) e₃)
in proj₁ (𝓛 n)
in LatticeT n
payloadˡ (n₁ , l₁) (n₂ , l₂) (n₃ , l₃)
with n (n₁ ⊔ᵇ n₂) ⊔ᵇ n₃
using _⊔ⁿ_ FiniteHeightLattice._⊔_ (proj₂ (𝓛 n))
using _⊔ⁿ_ FiniteHeightLattice._⊔_ (FHL n)
with n n₁ | n n₂ | n n₃
... | yes refl | yes refl | yes refl = (l₁ ⊔ⁿ l₂) ⊔ⁿ l₃
... | yes refl | yes refl | no _ = l₁ ⊔ⁿ l₂
@@ -677,13 +683,13 @@ record Graph : Set where
... | no _ | yes refl | yes refl = l₂ ⊔ⁿ l₃
... | no _ | yes refl | no _ = l₂
... | no _ | no _ | yes refl = l₃
... | no _ | no _ | no _ = FiniteHeightLattice.⊥ (proj₂ (𝓛 n))
... | no _ | no _ | no _ = FiniteHeightLattice.⊥ (FHL n)
payloadʳ : e₁ e₂ e₃ let n = proj₁ (e₁ (e₂ e₃))
in proj₁ (𝓛 n)
in LatticeT n
payloadʳ (n₁ , l₁) (n₂ , l₂) (n₃ , l₃)
with n n₁ ⊔ᵇ (n₂ ⊔ᵇ n₃)
using _⊔ⁿ_ FiniteHeightLattice._⊔_ (proj₂ (𝓛 n))
using _⊔ⁿ_ FiniteHeightLattice._⊔_ (FHL n)
with n n₁ | n n₂ | n n₃
... | yes refl | yes refl | yes refl = l₁ ⊔ⁿ (l₂ ⊔ⁿ l₃)
... | yes refl | yes refl | no _ = l₁ ⊔ⁿ l₂
@@ -692,7 +698,7 @@ record Graph : Set where
... | no _ | yes refl | yes refl = l₂ ⊔ⁿ l₃
... | no _ | yes refl | no _ = l₂
... | no _ | no _ | yes refl = l₃
... | no _ | no _ | no _ = FiniteHeightLattice.⊥ (proj₂ (𝓛 n))
... | no _ | no _ | no _ = FiniteHeightLattice.⊥ (FHL n)
⊔ᵇ-prop : n₁ n₂ n₃ (n₁ ⊔ᵇ n₂) ⊔ᵇ n₃ n₁
(n₁ ⊔ᵇ n₂ n₁) × (n₁ ⊔ᵇ n₃ n₁)
@@ -865,7 +871,7 @@ record Graph : Set where
rewrite trans (sym )
with n₁ | n₂ | n₃
... | yes refl | yes refl | yes refl =
let l-assoc = FiniteHeightLattice.⊔-assoc (proj₂ (𝓛 n₁)) l₁ l₂ l₃
let l-assoc = FiniteHeightLattice.⊔-assoc (FHL n₁) l₁ l₂ l₃
in ≈-trans final₁ (≈-trans (≈-lift l-assoc) (≈-sym final₂))
... | yes refl | yes refl | no _ = ≈-trans final₁ (≈-sym final₂)
... | yes refl | no _ | yes refl = ≈-trans final₁ (≈-sym final₂)