Remove IsDecidable record in favor of a plain definition
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
e3b8cc39f1
commit
e4f87175a0
|
@ -5,7 +5,7 @@ module Fixedpoint {a} {A : Set a}
|
||||||
{h : ℕ}
|
{h : ℕ}
|
||||||
{_≈_ : A → A → Set a}
|
{_≈_ : A → A → Set a}
|
||||||
{_⊔_ : A → A → A} {_⊓_ : A → A → A}
|
{_⊔_ : A → A → A} {_⊓_ : A → A → A}
|
||||||
(decA : IsDecidable _≈_)
|
(≈-dec : IsDecidable _≈_)
|
||||||
(flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_)
|
(flA : IsFiniteHeightLattice A h _≈_ _⊔_ _⊓_)
|
||||||
(f : A → A)
|
(f : A → A)
|
||||||
(Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA)
|
(Monotonicᶠ : Monotonic (IsFiniteHeightLattice._≼_ flA)
|
||||||
|
@ -16,12 +16,11 @@ open import Data.Product using (_×_; Σ; _,_; proj₁; proj₂)
|
||||||
open import Relation.Binary.PropositionalEquality using (_≡_; sym)
|
open import Relation.Binary.PropositionalEquality using (_≡_; sym)
|
||||||
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
open import Relation.Nullary using (Dec; ¬_; yes; no)
|
||||||
|
|
||||||
|
open IsFiniteHeightLattice flA
|
||||||
|
|
||||||
import Chain
|
import Chain
|
||||||
module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
module ChainA = Chain _≈_ ≈-equiv _≺_ ≺-cong
|
||||||
|
|
||||||
open IsDecidable decA using () renaming (R-dec to ≈-dec)
|
|
||||||
open IsFiniteHeightLattice flA
|
|
||||||
|
|
||||||
private
|
private
|
||||||
⊥ᴬ : A
|
⊥ᴬ : A
|
||||||
⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight))
|
⊥ᴬ = proj₁ (proj₁ (proj₁ fixedHeight))
|
||||||
|
|
|
@ -19,9 +19,8 @@ open import Data.Empty using (⊥)
|
||||||
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
absurd : ∀ {a} {A : Set a} → ⊥ → A
|
||||||
absurd ()
|
absurd ()
|
||||||
|
|
||||||
record IsDecidable {a} {A : Set a} (R : A → A → Set a) : Set a where
|
IsDecidable : ∀ {a} {A : Set a} (R : A → A → Set a) → Set a
|
||||||
field
|
IsDecidable {a} {A} R = ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
||||||
R-dec : ∀ (a₁ a₂ : A) → Dec (R a₁ a₂)
|
|
||||||
|
|
||||||
record IsSemilattice {a} (A : Set a)
|
record IsSemilattice {a} (A : Set a)
|
||||||
(_≈_ : A → A → Set a)
|
(_≈_ : A → A → Set a)
|
||||||
|
@ -361,7 +360,7 @@ module IsLatticeInstances where
|
||||||
module IsFiniteHeightLatticeInstances where
|
module IsFiniteHeightLatticeInstances where
|
||||||
module ForProd {a} {A B : Set a}
|
module ForProd {a} {A B : Set a}
|
||||||
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
(_≈₁_ : A → A → Set a) (_≈₂_ : B → B → Set a)
|
||||||
(decA : IsDecidable _≈₁_) (decB : IsDecidable _≈₂_)
|
(≈₁-dec : IsDecidable _≈₁_) (≈₂-dec : IsDecidable _≈₂_)
|
||||||
(_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A)
|
(_⊔₁_ : A → A → A) (_⊓₁_ : A → A → A)
|
||||||
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||||||
(h₁ h₂ : ℕ)
|
(h₁ h₂ : ℕ)
|
||||||
|
@ -373,8 +372,6 @@ module IsFiniteHeightLatticeInstances where
|
||||||
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_; ≺-cong; ≈-equiv)
|
open IsLattice ProdLattice.ProdIsLattice using (_≼_; _≺_; ≺-cong; ≈-equiv)
|
||||||
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_; ≈-equiv to ≈₁-equiv; ≈-refl to ≈₁-refl; ≈-trans to ≈₁-trans; ≈-sym to ≈₁-sym; _≺_ to _≺₁_; ≺-cong to ≺₁-cong)
|
open IsFiniteHeightLattice lA using () renaming (⊔-idemp to ⊔₁-idemp; _≼_ to _≼₁_; ≈-equiv to ≈₁-equiv; ≈-refl to ≈₁-refl; ≈-trans to ≈₁-trans; ≈-sym to ≈₁-sym; _≺_ to _≺₁_; ≺-cong to ≺₁-cong)
|
||||||
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_; ≈-equiv to ≈₂-equiv; ≈-refl to ≈₂-refl; ≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; _≺_ to _≺₂_; ≺-cong to ≺₂-cong)
|
open IsFiniteHeightLattice lB using () renaming (⊔-idemp to ⊔₂-idemp; _≼_ to _≼₂_; ≈-equiv to ≈₂-equiv; ≈-refl to ≈₂-refl; ≈-trans to ≈₂-trans; ≈-sym to ≈₂-sym; _≺_ to _≺₂_; ≺-cong to ≺₂-cong)
|
||||||
open IsDecidable decA using () renaming (R-dec to ≈₁-dec)
|
|
||||||
open IsDecidable decB using () renaming (R-dec to ≈₂-dec)
|
|
||||||
|
|
||||||
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
module ChainMapping₁ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lA) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||||
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
module ChainMapping₂ = ChainMapping (IsFiniteHeightLattice.joinSemilattice lB) (IsLattice.joinSemilattice ProdLattice.ProdIsLattice)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user