Add a 'Finite Map' lattice
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
ad26d20274
commit
ec31333e9a
78
Lattice/FiniteMap.agda
Normal file
78
Lattice/FiniteMap.agda
Normal file
|
@ -0,0 +1,78 @@
|
||||||
|
open import Lattice
|
||||||
|
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; sym; trans; cong; subst)
|
||||||
|
open import Relation.Binary.Definitions using (Decidable)
|
||||||
|
open import Agda.Primitive using (Level) renaming (_⊔_ to _⊔ℓ_)
|
||||||
|
open import Data.List using (List)
|
||||||
|
|
||||||
|
module Lattice.FiniteMap {a b : Level} (A : Set a) (B : Set b)
|
||||||
|
(_≈₂_ : B → B → Set b)
|
||||||
|
(_⊔₂_ : B → B → B) (_⊓₂_ : B → B → B)
|
||||||
|
(≡-dec-A : Decidable (_≡_ {a} {A}))
|
||||||
|
(lB : IsLattice B _≈₂_ _⊔₂_ _⊓₂_) where
|
||||||
|
|
||||||
|
open import Lattice.Map A B _≈₂_ _⊔₂_ _⊓₂_ ≡-dec-A lB as Map
|
||||||
|
using (Map; ⊔-equal-keys; ⊓-equal-keys)
|
||||||
|
renaming
|
||||||
|
( _≈_ to _≈ᵐ_
|
||||||
|
; _⊔_ to _⊔ᵐ_
|
||||||
|
; _⊓_ to _⊓ᵐ_
|
||||||
|
; ≈-equiv to ≈ᵐ-equiv
|
||||||
|
; ≈-⊔-cong to ≈ᵐ-⊔ᵐ-cong
|
||||||
|
; ⊔-assoc to ⊔ᵐ-assoc
|
||||||
|
; ⊔-comm to ⊔ᵐ-comm
|
||||||
|
; ⊔-idemp to ⊔ᵐ-idemp
|
||||||
|
; ≈-⊓-cong to ≈ᵐ-⊓ᵐ-cong
|
||||||
|
; ⊓-assoc to ⊓ᵐ-assoc
|
||||||
|
; ⊓-comm to ⊓ᵐ-comm
|
||||||
|
; ⊓-idemp to ⊓ᵐ-idemp
|
||||||
|
; absorb-⊔-⊓ to absorb-⊔ᵐ-⊓ᵐ
|
||||||
|
; absorb-⊓-⊔ to absorb-⊓ᵐ-⊔ᵐ
|
||||||
|
)
|
||||||
|
open import Data.Product using (_×_; _,_; Σ; proj₁ ; proj₂)
|
||||||
|
open import Equivalence
|
||||||
|
|
||||||
|
module _ (ks : List A) where
|
||||||
|
FiniteMap : Set (a ⊔ℓ b)
|
||||||
|
FiniteMap = Σ Map (λ m → Map.keys m ≡ ks)
|
||||||
|
|
||||||
|
_≈_ : FiniteMap → FiniteMap → Set (a ⊔ℓ b)
|
||||||
|
_≈_ (m₁ , _) (m₂ , _) = m₁ ≈ᵐ m₂
|
||||||
|
|
||||||
|
_⊔_ : FiniteMap → FiniteMap → FiniteMap
|
||||||
|
_⊔_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊔ᵐ m₂ , trans (sym (⊔-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks)
|
||||||
|
|
||||||
|
_⊓_ : FiniteMap → FiniteMap → FiniteMap
|
||||||
|
_⊓_ (m₁ , km₁≡ks) (m₂ , km₂≡ks) = (m₁ ⊓ᵐ m₂ , trans (sym (⊓-equal-keys {m₁} {m₂} (trans (km₁≡ks) (sym km₂≡ks)))) km₁≡ks)
|
||||||
|
|
||||||
|
≈-equiv : IsEquivalence FiniteMap _≈_
|
||||||
|
≈-equiv = record
|
||||||
|
{ ≈-refl = λ {(m , _)} → IsEquivalence.≈-refl ≈ᵐ-equiv {m}
|
||||||
|
; ≈-sym = λ {(m₁ , _)} {(m₂ , _)} → IsEquivalence.≈-sym ≈ᵐ-equiv {m₁} {m₂}
|
||||||
|
; ≈-trans = λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} → IsEquivalence.≈-trans ≈ᵐ-equiv {m₁} {m₂} {m₃}
|
||||||
|
}
|
||||||
|
|
||||||
|
isUnionSemilattice : IsSemilattice FiniteMap _≈_ _⊔_
|
||||||
|
isUnionSemilattice = record
|
||||||
|
{ ≈-equiv = ≈-equiv
|
||||||
|
; ≈-⊔-cong = λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ → ≈ᵐ-⊔ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||||||
|
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊔ᵐ-assoc m₁ m₂ m₃
|
||||||
|
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊔ᵐ-comm m₁ m₂
|
||||||
|
; ⊔-idemp = λ (m , _) → ⊔ᵐ-idemp m
|
||||||
|
}
|
||||||
|
|
||||||
|
isIntersectSemilattice : IsSemilattice FiniteMap _≈_ _⊓_
|
||||||
|
isIntersectSemilattice = record
|
||||||
|
{ ≈-equiv = ≈-equiv
|
||||||
|
; ≈-⊔-cong = λ {(m₁ , _)} {(m₂ , _)} {(m₃ , _)} {(m₄ , _)} m₁≈m₂ m₃≈m₄ → ≈ᵐ-⊓ᵐ-cong {m₁} {m₂} {m₃} {m₄} m₁≈m₂ m₃≈m₄
|
||||||
|
; ⊔-assoc = λ (m₁ , _) (m₂ , _) (m₃ , _) → ⊓ᵐ-assoc m₁ m₂ m₃
|
||||||
|
; ⊔-comm = λ (m₁ , _) (m₂ , _) → ⊓ᵐ-comm m₁ m₂
|
||||||
|
; ⊔-idemp = λ (m , _) → ⊓ᵐ-idemp m
|
||||||
|
}
|
||||||
|
|
||||||
|
isLattice : IsLattice FiniteMap _≈_ _⊔_ _⊓_
|
||||||
|
isLattice = record
|
||||||
|
{ joinSemilattice = isUnionSemilattice
|
||||||
|
; meetSemilattice = isIntersectSemilattice
|
||||||
|
; absorb-⊔-⊓ = λ (m₁ , _) (m₂ , _) → absorb-⊔ᵐ-⊓ᵐ m₁ m₂
|
||||||
|
; absorb-⊓-⊔ = λ (m₁ , _) (m₂ , _) → absorb-⊓ᵐ-⊔ᵐ m₁ m₂
|
||||||
|
}
|
|
@ -141,9 +141,9 @@ private module ImplInsert (f : B → B → B) where
|
||||||
rewrite union-subset-keys kl₁'⊆kl₂ =
|
rewrite union-subset-keys kl₁'⊆kl₂ =
|
||||||
insert-keys-∈ k∈kl₂
|
insert-keys-∈ k∈kl₂
|
||||||
|
|
||||||
union-equal-keys : ∀ (l₁ l₂ : List (A × B)) →
|
union-equal-keys : ∀ {l₁ l₂ : List (A × B)} →
|
||||||
keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (union l₁ l₂)
|
keys l₁ ≡ keys l₂ → keys l₁ ≡ keys (union l₁ l₂)
|
||||||
union-equal-keys l₁ l₂ kl₁≡kl₂
|
union-equal-keys {l₁} {l₂} kl₁≡kl₂
|
||||||
with subst (λ l → All (λ k → k ∈ l) (keys l₁)) kl₁≡kl₂ (All-x∈xs (keys l₁))
|
with subst (λ l → All (λ k → k ∈ l) (keys l₁)) kl₁≡kl₂ (All-x∈xs (keys l₁))
|
||||||
... | kl₁⊆kl₂ = trans kl₁≡kl₂ (union-subset-keys {l₁} {l₂} kl₁⊆kl₂)
|
... | kl₁⊆kl₂ = trans kl₁≡kl₂ (union-subset-keys {l₁} {l₂} kl₁⊆kl₂)
|
||||||
|
|
||||||
|
@ -512,8 +512,8 @@ data Expr : Set (a ⊔ℓ b) where
|
||||||
_∪_ : Expr → Expr → Expr
|
_∪_ : Expr → Expr → Expr
|
||||||
_∩_ : Expr → Expr → Expr
|
_∩_ : Expr → Expr → Expr
|
||||||
|
|
||||||
open ImplInsert _⊔₂_ using (union-preserves-Unique) renaming (insert to insert-impl; union to union-impl)
|
open ImplInsert _⊔₂_ using (union-preserves-Unique; union-equal-keys) renaming (insert to insert-impl; union to union-impl)
|
||||||
open ImplInsert _⊓₂_ using (intersect-preserves-Unique) renaming (intersect to intersect-impl)
|
open ImplInsert _⊓₂_ using (intersect-preserves-Unique; intersect-equal-keys) renaming (intersect to intersect-impl)
|
||||||
|
|
||||||
_⊔_ : Map → Map → Map
|
_⊔_ : Map → Map → Map
|
||||||
_⊔_ (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
_⊔_ (kvs₁ , _) (kvs₂ , uks₂) = (union-impl kvs₁ kvs₂ , union-preserves-Unique kvs₁ kvs₂ uks₂)
|
||||||
|
@ -881,3 +881,9 @@ isLattice = record
|
||||||
; absorb-⊔-⊓ = absorb-⊔-⊓
|
; absorb-⊔-⊓ = absorb-⊔-⊓
|
||||||
; absorb-⊓-⊔ = absorb-⊓-⊔
|
; absorb-⊓-⊔ = absorb-⊓-⊔
|
||||||
}
|
}
|
||||||
|
|
||||||
|
⊔-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊔ m₂)
|
||||||
|
⊔-equal-keys km₁≡km₂ = union-equal-keys km₁≡km₂
|
||||||
|
|
||||||
|
⊓-equal-keys : ∀ {m₁ m₂ : Map} → keys m₁ ≡ keys m₂ → keys m₁ ≡ keys (m₁ ⊓ m₂)
|
||||||
|
⊓-equal-keys km₁≡km₂ = intersect-equal-keys km₁≡km₂
|
||||||
|
|
Loading…
Reference in New Issue
Block a user