Delete code that won't be used for this approach

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-04-25 23:13:15 -07:00
parent c00c8e3e85
commit f2b8084a9c
2 changed files with 0 additions and 325 deletions

View File

@ -105,144 +105,3 @@ buildCfg ⟨ bs₁ ⟩ = singleton (bs₁ ∷ [])
buildCfg (s₁ then s₂) = buildCfg s₁ buildCfg s₂
buildCfg (if _ then s₁ else s₂) = singleton [] (buildCfg s₁ buildCfg s₂) singleton []
buildCfg (while _ repeat s) = loop (buildCfg s singleton [])
-- record _⊆_ (g₁ g₂ : Graph) : Set where
-- constructor Mk-⊆
-- field
-- n :
-- sg₂≡sg₁+n : Graph.size g₂ ≡ Graph.size g₁ Nat.+ n
-- newNodes : Vec (List BasicStmt) n
-- nsg₂≡nsg₁++newNodes : cast sg₂≡sg₁+n (Graph.nodes g₂) ≡ Graph.nodes g₁ ++ newNodes
-- e∈g₁⇒e∈g₂ : ∀ {e : Graph.Edge g₁} →
-- e ListMem.∈ (Graph.edges g₁) →
-- (↑ˡ-Edge e n) ListMem.∈ (subst (λ m → List (Fin m × Fin m)) sg₂≡sg₁+n (Graph.edges g₂))
--
-- private
-- castᵉ : ∀ {n m : } .(p : n ≡ m) → (Fin n × Fin n) → (Fin m × Fin m)
-- castᵉ p (idx₁ , idx₂) = (Fin.cast p idx₁ , Fin.cast p idx₂)
--
-- ↑ˡ-assoc : ∀ {s n₁ n₂} (f : Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
-- f ↑ˡ n₁ ↑ˡ n₂ ≡ Fin.cast p (f ↑ˡ (n₁ Nat.+ n₂))
-- ↑ˡ-assoc zero p = refl
-- ↑ˡ-assoc {suc s'} {n₁} {n₂} (suc f') p rewrite ↑ˡ-assoc f' (sym (+-assoc s' n₁ n₂)) = refl
--
-- ↑ˡ-Edge-assoc : ∀ {s n₁ n₂} (e : Fin s × Fin s) (p : s Nat.+ (n₁ Nat.+ n₂) ≡ s Nat.+ n₁ Nat.+ n₂) →
-- ↑ˡ-Edge (↑ˡ-Edge e n₁) n₂ ≡ castᵉ p (↑ˡ-Edge e (n₁ Nat.+ n₂))
-- ↑ˡ-Edge-assoc (idx₁ , idx₂) p
-- rewrite ↑ˡ-assoc idx₁ p
-- rewrite ↑ˡ-assoc idx₂ p = refl
--
-- ↑ˡ-identityʳ : ∀ {s} (f : Fin s) (p : s Nat.+ 0 ≡ s) →
-- f ≡ Fin.cast p (f ↑ˡ 0)
-- ↑ˡ-identityʳ zero p = refl
-- ↑ˡ-identityʳ {suc s'} (suc f') p rewrite sym (↑ˡ-identityʳ f' (+-comm s' 0)) = refl
--
-- ↑ˡ-Edge-identityʳ : ∀ {s} (e : Fin s × Fin s) (p : s Nat.+ 0 ≡ s) →
-- e ≡ castᵉ p (↑ˡ-Edge e 0)
-- ↑ˡ-Edge-identityʳ (idx₁ , idx₂) p
-- rewrite sym (↑ˡ-identityʳ idx₁ p)
-- rewrite sym (↑ˡ-identityʳ idx₂ p) = refl
--
-- cast∈⇒∈subst : ∀ {n m : } (p : n ≡ m) (q : m ≡ n)
-- (e : Fin n × Fin n) (es : List (Fin m × Fin m)) →
-- castᵉ p e ListMem.∈ es →
-- e ListMem.∈ subst (λ m → List (Fin m × Fin m)) q es
-- cast∈⇒∈subst refl refl (idx₁ , idx₂) es e∈es
-- rewrite FinProp.cast-is-id refl idx₁
-- rewrite FinProp.cast-is-id refl idx₂ = e∈es
--
-- ⊆-trans : ∀ {g₁ g₂ g₃ : Graph} → g₁ ⊆ g₂ → g₂ ⊆ g₃ → g₁ ⊆ g₃
-- ⊆-trans {MkGraph s₁ ns₁ es₁} {MkGraph s₂ ns₂ es₂} {MkGraph s₃ ns₃ es₃}
-- (Mk-⊆ n₁ p₁@refl newNodes₁ nsg₂≡nsg₁++newNodes₁ e∈g₁⇒e∈g₂)
-- (Mk-⊆ n₂ p₂@refl newNodes₂ nsg₃≡nsg₂++newNodes₂ e∈g₂⇒e∈g₃)
-- rewrite cast-is-id refl ns₂
-- rewrite cast-is-id refl ns₃
-- with refl ← nsg₂≡nsg₁++newNodes₁
-- with refl ← nsg₃≡nsg₂++newNodes₂ =
-- record
-- { n = n₁ Nat.+ n₂
-- ; sg₂≡sg₁+n = +-assoc s₁ n₁ n₂
-- ; newNodes = newNodes₁ ++ newNodes₂
-- ; nsg₂≡nsg₁++newNodes = ++-assoc (+-assoc s₁ n₁ n₂) ns₁ newNodes₁ newNodes₂
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈g₁ →
-- cast∈⇒∈subst (sym (+-assoc s₁ n₁ n₂)) (+-assoc s₁ n₁ n₂) _ _
-- (subst (λ e' → e' ListMem.∈ es₃)
-- (↑ˡ-Edge-assoc e (sym (+-assoc s₁ n₁ n₂)))
-- (e∈g₂⇒e∈g₃ (e∈g₁⇒e∈g₂ e∈g₁)))
-- }
--
-- open import MonotonicState _⊆_ ⊆-trans renaming (MonotonicState to MonotonicGraphFunction)
--
-- instance
-- IndexRelaxable : Relaxable Graph.Index
-- IndexRelaxable = record
-- { relax = λ { (Mk-⊆ n refl _ _ _) idx → idx ↑ˡ n }
-- }
--
-- EdgeRelaxable : Relaxable Graph.Edge
-- EdgeRelaxable = record
-- { relax = λ g₁⊆g₂ (idx₁ , idx₂) →
-- ( Relaxable.relax IndexRelaxable g₁⊆g₂ idx₁
-- , Relaxable.relax IndexRelaxable g₁⊆g₂ idx₂
-- )
-- }
--
-- open Relaxable {{...}}
--
-- pushBasicBlock : List BasicStmt → MonotonicGraphFunction Graph.Index
-- pushBasicBlock bss g =
-- ( record
-- { size = Graph.size g Nat.+ 1
-- ; nodes = Graph.nodes g ++ (bss ∷ [])
-- ; edges = List.map (λ e → ↑ˡ-Edge e 1) (Graph.edges g)
-- }
-- , ( Graph.size g ↑ʳ zero
-- , record
-- { n = 1
-- ; sg₂≡sg₁+n = refl
-- ; newNodes = (bss ∷ [])
-- ; nsg₂≡nsg₁++newNodes = cast-is-id refl _
-- ; e∈g₁⇒e∈g₂ = λ e∈g₁ → x∈xs⇒fx∈fxs (λ e → ↑ˡ-Edge e 1) e∈g₁
-- }
-- )
-- )
--
-- pushEmptyBlock : MonotonicGraphFunction Graph.Index
-- pushEmptyBlock = pushBasicBlock []
--
-- addEdges : ∀ (g : Graph) → List (Graph.Edge g) → Σ Graph (λ g' → g ⊆ g')
-- addEdges (MkGraph s ns es) es' =
-- ( record
-- { size = s
-- ; nodes = ns
-- ; edges = es' List.++ es
-- }
-- , record
-- { n = 0
-- ; sg₂≡sg₁+n = +-comm 0 s
-- ; newNodes = []
-- ; nsg₂≡nsg₁++newNodes = cast-sym _ (++-identityʳ (+-comm s 0) ns)
-- ; e∈g₁⇒e∈g₂ = λ {e} e∈es →
-- cast∈⇒∈subst (+-comm s 0) (+-comm 0 s) _ _
-- (subst (λ e' → e' ListMem.∈ _)
-- (↑ˡ-Edge-identityʳ e (+-comm s 0))
-- (ListMemProp.∈-++⁺ʳ es' e∈es))
-- }
-- )
--
-- buildCfg : Stmt → MonotonicGraphFunction (Graph.Index ⊗ Graph.Index)
-- buildCfg ⟨ bs₁ ⟩ = pushBasicBlock (bs₁ ∷ []) map (λ g idx → (idx , idx))
-- buildCfg (s₁ then s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → addEdges g ((idx₂ , idx₃) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄)) → (idx₁ , idx₄) })
-- buildCfg (if _ then s₁ else s₂) =
-- (buildCfg s₁ ⟨⊗⟩ buildCfg s₂ ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') →
-- addEdges g ((idx , idx₁) ∷ (idx , idx₃) ∷ (idx₂ , idx') ∷ (idx₄ , idx') ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , (idx₃ , idx₄) , idx , idx') → (idx , idx') })
-- buildCfg (while _ repeat s) =
-- (buildCfg s ⟨⊗⟩ pushEmptyBlock ⟨⊗⟩ pushEmptyBlock)
-- update (λ { g ((idx₁ , idx₂) , idx , idx') →
-- addEdges g ((idx , idx') ∷ (idx , idx₁) ∷ (idx₂ , idx) ∷ []) })
-- map (λ { g ((idx₁ , idx₂) , idx , idx') → (idx , idx') })

View File

@ -1,184 +0,0 @@
open import Agda.Primitive using (lsuc)
module MonotonicState {s} {S : Set s}
(_≼_ : S S Set s)
(≼-trans : {s₁ s₂ s₃ : S} s₁ s₂ s₂ s₃ s₁ s₃) where
open import Data.Product using (Σ; _×_; _,_)
open import Utils using (_⊗_; _,_)
-- Sometimes, we need a state monad whose values depend on the state. However,
-- one trouble with such monads is that as the state evolves, old values
-- in scope are over the 'old' state, and don't get updated accordingly.
-- Apparently, a related version of this problem is called 'demonic bind'.
--
-- One solution to the problem is to also witness some kind of relationtion
-- between the input and output states. Using this relationship makes it possible
-- to 'bring old values up to speed'.
--
-- Motivated primarily by constructing a Control Flow Graph, the 'relationship'
-- I've chosen is a 'less-than' relation. Thus, 'MonotonicState' is just
-- a (dependent) state "monad" that also witnesses that the state keeps growing.
MonotonicState : (S Set s) Set s
MonotonicState T = (s₁ : S) Σ S (λ s₂ T s₂ × s₁ s₂)
-- It's not a given that the (arbitrary) _≼_ relationship can be used for
-- updating old values. The Relaxable typeclass represents type constructor
-- that support the operation.
record Relaxable (T : S Set s) : Set (lsuc s) where
field relax : {s₁ s₂ : S} s₁ s₂ T s₁ T s₂
instance
ProdRelaxable : {P : S Set s} {Q : S Set s}
{{ PRelaxable : Relaxable P }} {{ QRelaxable : Relaxable Q }}
Relaxable (P Q)
ProdRelaxable {{pr}} {{qr}} = record
{ relax = (λ { g₁≼g₂ (p , q)
( Relaxable.relax pr g₁≼g₂ p
, Relaxable.relax qr g₁≼g₂ q) }
)
}
-- In general, the "MonotonicState monad" is not even a monad; it's not
-- even applicative. The trouble is that functions in general cannot be
-- 'relaxed', and to apply an 'old' function to a 'new' value, you'd thus
-- need to un-relax the value (which also isn't possible in general).
--
-- However, we _can_ combine pairs from two functions into a tuple, which
-- would equivalent to the applicative operation if functions were relaxable.
--
-- TODO: Now that I think about it, the swapped version of the applicative
-- operation is possible, since it doesn't require lifting functions.
infixr 4 _⟨⊗⟩_
_⟨⊗⟩_ : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }}
MonotonicState T₁ MonotonicState T₂ MonotonicState (T₁ T₂)
_⟨⊗⟩_ {{r}} f₁ f₂ s
with (s' , (t₁ , s≼s')) f₁ s
with (s'' , (t₂ , s'≼s'')) f₂ s' =
(s'' , ((Relaxable.relax r s'≼s'' t₁ , t₂) , ≼-trans s≼s' s'≼s''))
infixl 4 _update_
_update_ : {T : S Set s} {{ _ : Relaxable T }}
MonotonicState T ( (s : S) T s Σ S (λ s' s s'))
MonotonicState T
_update_ {{r}} f mod s
with (s' , (t , s≼s')) f s
with (s'' , s'≼s'') mod s' t =
(s'' , ((Relaxable.relax r s'≼s'' t , ≼-trans s≼s' s'≼s'')))
infixl 4 _map_
_map_ : {T₁ T₂ : S Set s}
MonotonicState T₁ ( (s : S) T₁ s T₂ s) MonotonicState T₂
_map_ f fn s = let (s' , (t₁ , s≼s')) = f s in (s' , (fn s' t₁ , s≼s'))
-- To reason about MonotonicState instances, we need predicates over their
-- values. But such values are dependent, so our predicates need to accept
-- the state as argument, too.
DependentPredicate : (S Set s) Set (lsuc s)
DependentPredicate T = (s₁ : S) T s₁ Set s
data Both {T₁ T₂ : S Set s}
(P : DependentPredicate T₁)
(Q : DependentPredicate T₂) : DependentPredicate (T₁ T₂) where
MkBoth : {s : S} {t₁ : T₁ s} {t₂ : T₂ s} P s t₁ Q s t₂ Both P Q s (t₁ , t₂)
data And {T : S Set s}
(P : DependentPredicate T)
(Q : DependentPredicate T) : DependentPredicate T where
MkAnd : {s : S} {t : T s} P s t Q s t And P Q s t
-- Since monotnic functions keep adding on to the state, proofs of
-- predicates over their outputs go stale fast (they describe old values of
-- the state). To keep them relevant, we need them to still hold on 'bigger
-- states'. We call such predicates monotonic as well, since they respect the
-- ordering relation.
record MonotonicPredicate {T : S Set s} {{ r : Relaxable T }} (P : DependentPredicate T) : Set s where
field relaxPredicate : (s₁ s₂ : S) (t₁ : T s₁) (s₁≼s₂ : s₁ s₂)
P s₁ t₁ P s₂ (Relaxable.relax r s₁≼s₂ t₁)
instance
BothMonotonic : {T₁ : S Set s} {T₂ : S Set s}
{{ _ : Relaxable T₁ }} {{ _ : Relaxable T₂ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}}
MonotonicPredicate (Both P Q)
BothMonotonic {{_}} {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ (t₁ , t₂) s₁≼s₂ (MkBoth p q)
MkBoth (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t₁ s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t₂ s₁≼s₂ q)})
}
AndMonotonic : {T : S Set s} {{ _ : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{_ : MonotonicPredicate P}} {{_ : MonotonicPredicate Q}}
MonotonicPredicate (And P Q)
AndMonotonic {{_}} {{P-Mono}} {{Q-Mono}} = record
{ relaxPredicate = (λ { s₁ s₂ t s₁≼s₂ (MkAnd p q)
MkAnd (MonotonicPredicate.relaxPredicate P-Mono s₁ s₂ t s₁≼s₂ p)
(MonotonicPredicate.relaxPredicate Q-Mono s₁ s₂ t s₁≼s₂ q)})
}
-- A MonotonicState "monad" m has a certain property if its ouputs satisfy that
-- property for all inputs.
data Always {T : S Set s} (P : DependentPredicate T) (m : MonotonicState T) : Set s where
MkAlways : ( s₁ let (s₂ , t , _) = m s₁ in P s₂ t) Always P m
infixr 4 _⟨⊗⟩-reason_
_⟨⊗⟩-reason_ : {T₁ T₂ : S Set s} {{ _ : Relaxable T₁ }}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{{P-Mono : MonotonicPredicate P}}
{m₁ : MonotonicState T₁} {m₂ : MonotonicState T₂}
Always P m₁ Always Q m₂ Always (Both P Q) (m₁ ⟨⊗⟩ m₂)
_⟨⊗⟩-reason_ {P = P} {Q = Q} {{P-Mono = P-Mono}} {m₁ = m₁} {m₂ = m₂} (MkAlways aP) (MkAlways aQ) =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m₁ ⟨⊗⟩ m₂) s₁ in (Both P Q) s₂ t
impl s
with p aP s
with (s' , (t₁ , s≼s')) m₁ s
with q aQ s'
with (s'' , (t₂ , s'≼s'')) m₂ s' =
MkBoth (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _update-reason_
_update-reason_ : {T : S Set s} {{ r : Relaxable T }}
{P : DependentPredicate T} {Q : DependentPredicate T}
{{P-Mono : MonotonicPredicate P}}
{m : MonotonicState T} {mod : (s : S) T s Σ S (λ s' s s')}
Always P m ( (s : S) (t : T s)
let (s' , s≼s') = mod s t
in P s t Q s' (Relaxable.relax r s≼s' t))
Always (And P Q) (m update mod)
_update-reason_ {{r = r}} {P = P} {Q = Q} {{P-Mono = P-Mono}} {m = m} {mod = mod} (MkAlways aP) modQ =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m update mod) s₁ in (And P Q) s₂ t
impl s
with p aP s
with (s' , (t , s≼s')) m s
with q modQ s' t p
with (s'' , s'≼s'') mod s' t =
MkAnd (MonotonicPredicate.relaxPredicate P-Mono _ _ _ s'≼s'' p) q
infixl 4 _map-reason_
_map-reason_ : {T₁ T₂ : S Set s}
{P : DependentPredicate T₁} {Q : DependentPredicate T₂}
{m : MonotonicState T₁}
{f : (s : S) T₁ s T₂ s}
Always P m ( (s : S) (t₁ : T₁ s) P s t₁ Q s (f s t₁))
Always Q (m map f)
_map-reason_ {P = P} {Q = Q} {m = m} {f = f} (MkAlways aP) P⇒Q =
MkAlways impl
where
impl : s₁ let (s₂ , t , _) = (m map f) s₁ in Q s₂ t
impl s
with p aP s
with (s' , (t₁ , s≼s')) m s = P⇒Q s' t₁ p