Prove that the 'join' transformation is monotonic
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
1b1b80465c
commit
f84a1c923c
@ -1,11 +1,14 @@
|
||||
module Analysis.Sign where
|
||||
|
||||
open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
|
||||
open import Data.Product using (proj₁)
|
||||
open import Data.List using (foldr)
|
||||
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
|
||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||
|
||||
open import Language
|
||||
open import Lattice
|
||||
open import Utils using (Pairwise)
|
||||
import Lattice.Bundles.FiniteValueMap
|
||||
|
||||
private module FixedHeightFiniteMap = Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice
|
||||
@ -31,7 +34,9 @@ module _ (prog : Program) where
|
||||
open Program prog
|
||||
|
||||
-- embelish 'sign' with a top and bottom element.
|
||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec)
|
||||
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
|
||||
using ()
|
||||
renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec)
|
||||
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
|
||||
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
|
||||
|
||||
@ -40,16 +45,61 @@ module _ (prog : Program) where
|
||||
|
||||
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
|
||||
open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
|
||||
using ()
|
||||
renaming
|
||||
( finiteHeightLattice to finiteHeightLatticeᵛ
|
||||
; FiniteMap to VariableSigns
|
||||
; _≈_ to _≈ᵛ_
|
||||
; _⊔_ to _⊔ᵛ_
|
||||
; ≈-dec to ≈ᵛ-dec
|
||||
)
|
||||
open FiniteHeightLattice finiteHeightLatticeᵛ
|
||||
using ()
|
||||
renaming
|
||||
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
|
||||
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
|
||||
; _≼_ to _≼ᵛ_
|
||||
; joinSemilattice to joinSemilatticeᵛ
|
||||
; ⊔-idemp to ⊔ᵛ-idemp
|
||||
)
|
||||
|
||||
⊥ᵛ = proj₁ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight finiteHeightLatticeᵛ)))
|
||||
|
||||
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
|
||||
open FixedHeightFiniteMap State VariableSigns _≟_ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec
|
||||
module StateVariablesFiniteMap = FixedHeightFiniteMap State VariableSigns _≟_ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec
|
||||
open StateVariablesFiniteMap
|
||||
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
|
||||
renaming
|
||||
( finiteHeightLattice to finiteHeightLatticeᵐ
|
||||
; FiniteMap to StateVariables
|
||||
; isLattice to isLatticeᵐ
|
||||
)
|
||||
open FiniteHeightLattice finiteHeightLatticeᵐ
|
||||
using ()
|
||||
renaming (_≼_ to _≼ᵐ_)
|
||||
|
||||
-- build up the 'join' function, which follows from Exercise 4.26's
|
||||
--
|
||||
-- L₁ → (A → L₂)
|
||||
--
|
||||
-- Construction, with L₁ = (A → L₂), and f = id
|
||||
|
||||
joinForKey : State → StateVariables → VariableSigns
|
||||
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
|
||||
|
||||
-- The per-key join is made up of map key accesses (which are monotonic)
|
||||
-- and folds using the join operation (also monotonic)
|
||||
|
||||
joinForKey-Mono : ∀ (k : State) → Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
|
||||
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
|
||||
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
|
||||
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
|
||||
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
|
||||
|
||||
-- The name f' comes from the formulation of Exercise 4.26.
|
||||
|
||||
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x → x) (λ a₁≼a₂ → a₁≼a₂) joinForKey joinForKey-Mono states
|
||||
renaming
|
||||
( f' to joinAll
|
||||
; f'-Monotonic to joinAll-Mono
|
||||
)
|
||||
|
@ -91,3 +91,15 @@ record Program : Set where
|
||||
|
||||
_≟_ : IsDecidable (_≡_ {_} {State})
|
||||
_≟_ = _≟ᶠ_
|
||||
|
||||
-- Computations for incoming and outgoing edged will have to change too
|
||||
-- when we support branching etc.
|
||||
|
||||
incoming : State → List State
|
||||
incoming
|
||||
with length
|
||||
... | 0 = (λ ())
|
||||
... | suc n' = (λ
|
||||
{ zero → []
|
||||
; (suc f') → (inject₁ f') ∷ []
|
||||
})
|
||||
|
@ -124,7 +124,7 @@ module _ {a} {A : Set a}
|
||||
open IsSemilattice lA using (_≼_)
|
||||
|
||||
id-Mono : Monotonic _≼_ _≼_ (λ x → x)
|
||||
id-Mono a₁≼a₂ = a₁≼a₂
|
||||
id-Mono {a₁} {a₂} a₁≼a₂ = a₁≼a₂
|
||||
|
||||
module _ {a b} {A : Set a} {B : Set b}
|
||||
{_≈₁_ : A → A → Set a} {_⊔₁_ : A → A → A}
|
||||
|
@ -132,23 +132,24 @@ module WithKeys (ks : List A) where
|
||||
; isLattice = isLattice
|
||||
}
|
||||
|
||||
module _ {l} {L : Set l}
|
||||
module GeneralizedUpdate
|
||||
{l} {L : Set l}
|
||||
{_≈ˡ_ : L → L → Set l} {_⊔ˡ_ : L → L → L} {_⊓ˡ_ : L → L → L}
|
||||
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_) where
|
||||
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
|
||||
(f : L → FiniteMap) (f-Monotonic : Monotonic (IsLattice._≼_ lL) _≼_ f)
|
||||
(g : A → L → B) (g-Monotonicʳ : ∀ k → Monotonic (IsLattice._≼_ lL) _≼₂_ (g k))
|
||||
(ks : List A) where
|
||||
|
||||
open IsLattice lL using () renaming (_≼_ to _≼ˡ_)
|
||||
|
||||
module _ (f : L → FiniteMap) (f-Monotonic : Monotonic _≼ˡ_ _≼_ f)
|
||||
(g : A → L → B) (g-Monotonicʳ : ∀ k → Monotonic _≼ˡ_ _≼₂_ (g k))
|
||||
(ks : List A) where
|
||||
updater : L → A → B
|
||||
updater l k = g k l
|
||||
|
||||
updater : L → A → B
|
||||
updater l k = g k l
|
||||
f' : L → FiniteMap
|
||||
f' l = (f l) updating ks via (updater l)
|
||||
|
||||
f' : L → FiniteMap
|
||||
f' l = (f l) updating ks via (updater l)
|
||||
|
||||
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
|
||||
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ ∘ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
|
||||
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
|
||||
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ ∘ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
|
||||
|
||||
all-equal-keys : ∀ (fm₁ fm₂ : FiniteMap) → (Map.keys (proj₁ fm₁) ≡ Map.keys (proj₁ fm₂))
|
||||
all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks)
|
||||
|
Loading…
Reference in New Issue
Block a user