Prove that the 'join' transformation is monotonic

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-03-09 23:06:47 -08:00
parent 1b1b80465c
commit f84a1c923c
4 changed files with 78 additions and 15 deletions

View File

@ -1,11 +1,14 @@
module Analysis.Sign where module Analysis.Sign where
open import Data.String using (String) renaming (_≟_ to _≟ˢ_) open import Data.String using (String) renaming (_≟_ to _≟ˢ_)
open import Data.Product using (proj₁)
open import Data.List using (foldr)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary using (¬_; Dec; yes; no)
open import Language open import Language
open import Lattice open import Lattice
open import Utils using (Pairwise)
import Lattice.Bundles.FiniteValueMap import Lattice.Bundles.FiniteValueMap
private module FixedHeightFiniteMap = Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice private module FixedHeightFiniteMap = Lattice.Bundles.FiniteValueMap.FromFiniteHeightLattice
@ -31,7 +34,9 @@ module _ (prog : Program) where
open Program prog open Program prog
-- embelish 'sign' with a top and bottom element. -- embelish 'sign' with a top and bottom element.
open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec) open import Lattice.AboveBelow Sign _≡_ (record { ≈-refl = refl; ≈-sym = sym; ≈-trans = trans }) _≟ᵍ_ as AB
using ()
renaming (AboveBelow to SignLattice; ≈-dec to ≈ᵍ-dec)
-- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice. -- 'sign' has no underlying lattice structure, so use the 'plain' above-below lattice.
open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited) open AB.Plain using () renaming (finiteHeightLattice to finiteHeightLatticeᵍ-if-inhabited)
@ -40,16 +45,61 @@ module _ (prog : Program) where
-- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators. -- The variable -> sign map is a finite value-map with keys strings. Use a bundle to avoid explicitly specifying operators.
open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec open FixedHeightFiniteMap String SignLattice _≟ˢ_ finiteHeightLatticeᵍ vars-Unique ≈ᵍ-dec
using ()
renaming renaming
( finiteHeightLattice to finiteHeightLatticeᵛ ( finiteHeightLattice to finiteHeightLatticeᵛ
; FiniteMap to VariableSigns ; FiniteMap to VariableSigns
; _≈_ to _≈ᵛ_ ; _≈_ to _≈ᵛ_
; _⊔_ to _⊔ᵛ_
; ≈-dec to ≈ᵛ-dec ; ≈-dec to ≈ᵛ-dec
) )
open FiniteHeightLattice finiteHeightLatticeᵛ
using ()
renaming
( ⊔-Monotonicˡ to ⊔ᵛ-Monotonicˡ
; ⊔-Monotonicʳ to ⊔ᵛ-Monotonicʳ
; _≼_ to _≼ᵛ_
; joinSemilattice to joinSemilatticeᵛ
; ⊔-idemp to ⊔ᵛ-idemp
)
⊥ᵛ = proj₁ (proj₁ (proj₁ (FiniteHeightLattice.fixedHeight finiteHeightLatticeᵛ)))
-- Finally, the map we care about is (state -> (variables -> sign)). Bring that in. -- Finally, the map we care about is (state -> (variables -> sign)). Bring that in.
open FixedHeightFiniteMap State VariableSigns _≟_ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec module StateVariablesFiniteMap = FixedHeightFiniteMap State VariableSigns _≟_ finiteHeightLatticeᵛ states-Unique ≈ᵛ-dec
open StateVariablesFiniteMap
using (_[_]; m₁≼m₂⇒m₁[ks]≼m₂[ks])
renaming renaming
( finiteHeightLattice to finiteHeightLatticeᵐ ( finiteHeightLattice to finiteHeightLatticeᵐ
; FiniteMap to StateVariables ; FiniteMap to StateVariables
; isLattice to isLatticeᵐ
)
open FiniteHeightLattice finiteHeightLatticeᵐ
using ()
renaming (_≼_ to _≼ᵐ_)
-- build up the 'join' function, which follows from Exercise 4.26's
--
-- L₁ → (A → L₂)
--
-- Construction, with L₁ = (A → L₂), and f = id
joinForKey : State StateVariables VariableSigns
joinForKey k states = foldr _⊔ᵛ_ ⊥ᵛ (states [ incoming k ])
-- The per-key join is made up of map key accesses (which are monotonic)
-- and folds using the join operation (also monotonic)
joinForKey-Mono : (k : State) Monotonic _≼ᵐ_ _≼ᵛ_ (joinForKey k)
joinForKey-Mono k {fm₁} {fm₂} fm₁≼fm₂ =
foldr-Mono joinSemilatticeᵛ joinSemilatticeᵛ (fm₁ [ incoming k ]) (fm₂ [ incoming k ]) _⊔ᵛ_ ⊥ᵛ ⊥ᵛ
(m₁≼m₂⇒m₁[ks]≼m₂[ks] fm₁ fm₂ (incoming k) fm₁≼fm₂)
(⊔ᵛ-idemp ⊥ᵛ) ⊔ᵛ-Monotonicʳ ⊔ᵛ-Monotonicˡ
-- The name f' comes from the formulation of Exercise 4.26.
open StateVariablesFiniteMap.GeneralizedUpdate states isLatticeᵐ (λ x x) (λ a₁≼a₂ a₁≼a₂) joinForKey joinForKey-Mono states
renaming
( f' to joinAll
; f'-Monotonic to joinAll-Mono
) )

View File

@ -91,3 +91,15 @@ record Program : Set where
_≟_ : IsDecidable (_≡_ {_} {State}) _≟_ : IsDecidable (_≡_ {_} {State})
_≟_ = _≟ᶠ_ _≟_ = _≟ᶠ_
-- Computations for incoming and outgoing edged will have to change too
-- when we support branching etc.
incoming : State List State
incoming
with length
... | 0 = (λ ())
... | suc n' = (λ
{ zero []
; (suc f') (inject₁ f') []
})

View File

@ -124,7 +124,7 @@ module _ {a} {A : Set a}
open IsSemilattice lA using (_≼_) open IsSemilattice lA using (_≼_)
id-Mono : Monotonic _≼_ _≼_ (λ x x) id-Mono : Monotonic _≼_ _≼_ (λ x x)
id-Mono a₁≼a₂ = a₁≼a₂ id-Mono {a₁} {a₂} a₁≼a₂ = a₁≼a₂
module _ {a b} {A : Set a} {B : Set b} module _ {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_⊔₁_ : A A A} {_≈₁_ : A A Set a} {_⊔₁_ : A A A}

View File

@ -132,23 +132,24 @@ module WithKeys (ks : List A) where
; isLattice = isLattice ; isLattice = isLattice
} }
module _ {l} {L : Set l} module GeneralizedUpdate
{l} {L : Set l}
{_≈ˡ_ : L L Set l} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L} {_≈ˡ_ : L L Set l} {_⊔ˡ_ : L L L} {_⊓ˡ_ : L L L}
(lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_) where (lL : IsLattice L _≈ˡ_ _⊔ˡ_ _⊓ˡ_)
(f : L FiniteMap) (f-Monotonic : Monotonic (IsLattice._≼_ lL) _≼_ f)
(g : A L B) (g-Monotonicʳ : k Monotonic (IsLattice._≼_ lL) _≼₂_ (g k))
(ks : List A) where
open IsLattice lL using () renaming (_≼_ to _≼ˡ_) open IsLattice lL using () renaming (_≼_ to _≼ˡ_)
module _ (f : L FiniteMap) (f-Monotonic : Monotonic _≼ˡ_ _≼_ f) updater : L A B
(g : A L B) (g-Monotonicʳ : k Monotonic _≼ˡ_ _≼₂_ (g k)) updater l k = g k l
(ks : List A) where
updater : L A B f' : L FiniteMap
updater l k = g k l f' l = (f l) updating ks via (updater l)
f' : L FiniteMap f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
f' l = (f l) updating ks via (updater l) f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
f'-Monotonic : Monotonic _≼ˡ_ _≼_ f'
f'-Monotonic {l₁} {l₂} l₁≼l₂ = f'-Monotonicᵐ lL (proj₁ f) f-Monotonic g g-Monotonicʳ ks l₁≼l₂
all-equal-keys : (fm₁ fm₂ : FiniteMap) (Map.keys (proj₁ fm₁) Map.keys (proj₁ fm₂)) all-equal-keys : (fm₁ fm₂ : FiniteMap) (Map.keys (proj₁ fm₁) Map.keys (proj₁ fm₂))
all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks) all-equal-keys (fm₁ , km₁≡ks) (fm₂ , km₂≡ks) = trans km₁≡ks (sym km₂≡ks)