Prove that the identity function is monotonic
Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
parent
164fc3636f
commit
fa0282ff6f
|
@ -103,6 +103,15 @@ record IsSemilattice {a} (A : Set a)
|
||||||
, λ a₂≈a₄ → a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄)))
|
, λ a₂≈a₄ → a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄)))
|
||||||
)
|
)
|
||||||
|
|
||||||
|
module _ {a} {A : Set a}
|
||||||
|
{_≈_ : A → A → Set a} {_⊔_ : A → A → A}
|
||||||
|
(lA : IsSemilattice A _≈_ _⊔_) where
|
||||||
|
|
||||||
|
open IsSemilattice lA using (_≼_)
|
||||||
|
|
||||||
|
id-Mono : Monotonic _≼_ _≼_ (λ x → x)
|
||||||
|
id-Mono a₁≼a₂ = a₁≼a₂
|
||||||
|
|
||||||
module _ {a b} {A : Set a} {B : Set b}
|
module _ {a b} {A : Set a} {B : Set b}
|
||||||
{_≈₁_ : A → A → Set a} {_⊔₁_ : A → A → A}
|
{_≈₁_ : A → A → Set a} {_⊔₁_ : A → A → A}
|
||||||
{_≈₂_ : B → B → Set b} {_⊔₂_ : B → B → B}
|
{_≈₂_ : B → B → Set b} {_⊔₂_ : B → B → B}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user