Prove that the identity function is monotonic

Signed-off-by: Danila Fedorin <danila.fedorin@gmail.com>
This commit is contained in:
Danila Fedorin 2024-03-06 00:35:06 -08:00
parent 164fc3636f
commit fa0282ff6f

View File

@ -103,6 +103,15 @@ record IsSemilattice {a} (A : Set a)
, λ a₂≈a₄ a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄))) , λ a₂≈a₄ a₁̷≈a₃ (≈-trans a₁≈a₂ (≈-trans a₂≈a₄ (≈-sym a₃≈a₄)))
) )
module _ {a} {A : Set a}
{_≈_ : A A Set a} {_⊔_ : A A A}
(lA : IsSemilattice A _≈_ _⊔_) where
open IsSemilattice lA using (_≼_)
id-Mono : Monotonic _≼_ _≼_ (λ x x)
id-Mono a₁≼a₂ = a₁≼a₂
module _ {a b} {A : Set a} {B : Set b} module _ {a b} {A : Set a} {B : Set b}
{_≈₁_ : A A Set a} {_⊔₁_ : A A A} {_≈₁_ : A A Set a} {_⊔₁_ : A A A}
{_≈₂_ : B B Set b} {_⊔₂_ : B B B} {_≈₂_ : B B Set b} {_⊔₂_ : B B B}